Skip to main content
Log in

Methane activation on PdMn/C-ITO electrocatalysts using a reactor-type PEMFC

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Various palladium and manganese supported in a mix of carbon and indium thin oxide (PdMn/C-ITO) compositions were synthesized by a sodium borohydride reduction process for methane activation at low temperatures in a proton exchange membrane fuel cell (PEMFC) reactor. These electrocatalysts were characterized by X-ray diffraction, transmission electron microscopy (TEM), X-ray photoelectron spectroscopy XPS, inductively coupled plasma mass spectrometry ICP-MS, attenuated total reflection-Fourier transform infrared spectroscopy, cyclic voltammetry and a PEMFC reactor. The diffractograms of PdMn/C-ITO electrocatalysts revealed the face-centered cubic structure of palladium and the bixbyite cubic structure of In2O3. TEM experiments showed mean nanoparticle sizes between 4.7 and 5.2 nm for all electrocatalysts. XPS results showed the presence of palladium and manganese oxides, as well as Pd0 species. Cyclic voltammograms of PdMn/C-ITO electrocatalysts showed an increase in current density values after the methane adsorption, this result is related to formation of methanol or formic acidic. Polarization curves at 80 °C acquired in a PEMFC reactor showed that PdMn(70:30)/C-ITO and PdMn(50:50)/C-ITO have superior performance when compared to Pd/C-ITO indicating the beneficial effect of adding Mn, this behavior can be attributed to the bifunctional mechanism or to the electronic effect of support.

This is a preview of subscription content, log in via an institution to check access.

Access this article

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. W. Liemberger, M. Groß, M. Miltner, M. Harasek, J. Clean. Prod. 167, 896 (2017)

    CAS  Google Scholar 

  2. A.W. Petrov, D. Ferri, F. Krumeich, M. Nachtegaal, J.A. van Bokhoven, O. Kröcher, Nat. Commun. 9, 2545 (2018)

    PubMed  PubMed Central  Google Scholar 

  3. S. Xie, S. Lin, Q. Zhang, Z. Tian, Y. Wang, J. Energy Chem. 27, 1629 (2018)

    Google Scholar 

  4. P. Schwach, X. Pan, X. Bao, Chem. Rev. 117, 8497 (2017)

    CAS  PubMed  Google Scholar 

  5. J. Lin, X. Wang, Sci. China Mater. 61(5), 758 (2018)

    CAS  Google Scholar 

  6. M. Ravi, M. Ranocchiari, J.A. van Bokhoven, Angew. Chem. Int. Ed. 56, 16464 (2017)

    CAS  Google Scholar 

  7. L. Arnarson, P.S. Schmidt, M. Pandey, A. Bagger, K.S. Thygesen, I.E.L. Stephens, J. Rossmeisl, Phys. Chem. Chem. Phys. 20, 11152 (2018)

    CAS  PubMed  Google Scholar 

  8. S. Specchia, F. Conti, V. Specchia, Ind. Eng. Chem. Res. 49, 11101 (2010)

    CAS  Google Scholar 

  9. P. Gélin, M. Primet, Appl. Catal. B 39, 1 (2002)

    Google Scholar 

  10. J. Nandenha, E.H. Fontes, R.M. Piasentin, F.C. Fonseca, A.O. Neto, J. Fuel Chem. Technol. 46(9), 1137 (2018)

    CAS  Google Scholar 

  11. F. Hahn, C.A. Melendres, Electrochim. Acta 46(23), 3525 (2001)

    CAS  Google Scholar 

  12. B. Suleiman, A.S. Abdulkareem, U. Musa, I.A. Mohammed, M.A. Olutoye, Y.I. Abdullahi, Energy Convers. Manag. 117, 228 (2016)

    CAS  Google Scholar 

  13. X. Zhang, G. Juncheng, C. Jincan, Energy 35, 5294 (2010)

    CAS  Google Scholar 

  14. K. Persson, K. Jansson, S.G. Järås, J. Catal. 245, 401 (2007)

    CAS  Google Scholar 

  15. R. Abbasi, G. Huang, G.M. Istratescu, L. Wu, R.E. Hayes, Can. J. Chem. Eng. 93, 1474 (2015)

    CAS  Google Scholar 

  16. J.J. Willis, E.D. Goodman, L. Wu, A.R. Riscoe, P. Martins, C.J. Tassone, M. Cargnello, J. Am. Chem. Soc. 139, 11989 (2017)

    CAS  PubMed  Google Scholar 

  17. H. Qiugu, J. Jinmei, Z. Qiao, Y. Xikun, L. Yan, M. Qi, Z. Yingjie, X. Mingli, Ionics. 26, 2421–2433 (2020).

    Google Scholar 

  18. M. Md. Abdul, J. Ji-Hoon, K. Young-Uk, J. Power Sources 262, 356 (2014)

    Google Scholar 

  19. A. Mohammad Shamsuddin, P. Dongchul, J. Seungwon, J. Power Sources 308, 180 (2016)

    Google Scholar 

  20. O. Lori, L. Elbaz, Catalysts 5, 1445 (2015)

    CAS  Google Scholar 

  21. C.A. Ottoni, R.R. de Souza, S.G. da Silva, E.V. Spinacé, R.F.B. de Souza, A.O. Neto, Electroanalysis 29, 960 (2017)

    CAS  Google Scholar 

  22. L. Shan-Shan, H. Yuan-Yuan, F. Jiu-Ju, L. Zhang-Ying, C. Jian-Rong, W. Ai-Jun, Int. J. Hydrog. Energy 39, 3730 (2014)

    Google Scholar 

  23. H. Chen, J. Duan, X. Zhang, Y. Zhang, C. Guo, L. Nie, X. Liu, Mater. Lett. 126, 9 (2014)

    CAS  Google Scholar 

  24. D. Schonvogel, J. Hulstede, P. Wagner, A. Dyck, C. Agert, M. Wark, J. Electrochem. Soc. 165, F3373–F3382 (2018)

    CAS  Google Scholar 

  25. S.-Y. Huang, P. Ganesan, S. Park, B.N. Popov, J. Am. Chem. Soc. 131, 13898 (2009)

    CAS  PubMed  Google Scholar 

  26. Y. Liu, W.E. Mustain, Electrochim. Acta 115, 116 (2014)

    CAS  Google Scholar 

  27. Y. Liu, W.E. Mustain, J. Am. Chem. Soc. 135, 530 (2013)

    CAS  PubMed  Google Scholar 

  28. K. Sasaki, L. Zhang, R.R. Adzic, Phys. Chem. Chem. Phys. 10, 159 (2008)

    CAS  PubMed  Google Scholar 

  29. C.V. Pereira, E.H. Fontes, J. Nandenha, M.H.M.T. Assumpção, A.O. Neto, Int. J. Electrochem. Sci. 13, 10587 (2018)

    CAS  Google Scholar 

  30. V.F. de Camargo, E.H. Fontes, J. Nandenha, R.F.B. de Souza, A.O. Neto, Res. Chem. Intermed. 46, 1555 (2020)

    Google Scholar 

  31. M. Brandalise, M.M. Tusi, R.M. Piasentin, M.C. dos Santos, E.V. Spinacé, A.O. Neto, Int. J. Electrochem. Sci. 7, 9609 (2012)

    CAS  Google Scholar 

  32. M.C.L. Santos, J. Nandenha, J.M.S. Ayoub, M.H.M.T. Assumpção, A.O. Neto, J. Fuel Chem. Technol. 46(12), 1462 (2018)

    CAS  Google Scholar 

  33. E.V. Spinacé, R.R. Dias, M. Brandalise, M. Linardi, A.O. Neto, Ionics 16, 91 (2010)

    Google Scholar 

  34. F.M. Souza, J. Nandenha, B.L. Batista, V.H.A. Oliveira, V.S. Pinheiro, L.S. Parreira, A.O. Neto, M.C. Santos, Int. J. Hydrog. Energy 43, 4505 (2018)

    CAS  Google Scholar 

  35. J. Nandenha, R.F.B. de Souza, M.H.M.T. Assumpção, E.V. Spinacé, A.O. Neto, Ionics 19, 1207 (2013)

    CAS  Google Scholar 

  36. J. Nandenha, I.H.F. Nagahama, J.Y. Yamashita, E.H. Fontes, J.M.S. Ayoub, R.F.B. de Souza, F.C. Fonseca, A.O. Neto, Int. J. Electrochem. Sci. 14, 10819 (2019)

    CAS  Google Scholar 

  37. T. Mittermeier, A. Weiß, H.A. Gasteiger, F. Hasché, J. Electrochem. Soc. 164(12), F1081–F1089 (2017)

    CAS  Google Scholar 

  38. E.H. Fontes, C.E.D. Ramos, J. Nandenha, R.M. Piasentin, A.O. Neto, R. Landers, Int. J. Hydrog. Energy 44, 937 (2019)

    CAS  Google Scholar 

  39. L. Feng, S. Yao, X. Zhao, L. Yan, C. Liu, W. Xing, J. Power Sources 197, 38 (2012)

    CAS  Google Scholar 

  40. J. Nandenha, R.F.B. de Souza, M.H.M.T. Assumpção, E.V. Spinacé, A.O. Neto, Int. J. Electrochem. Sci. 8, 9171 (2013)

    CAS  Google Scholar 

  41. L.L. Carvalho, A. Auro, A.A. Tanaka, F. Colmati, J. Solid State Electrochem. 22, 1471 (2018)

    CAS  Google Scholar 

  42. C.A. Ottoni, C.E.D. Ramos, R.F.B. de Souza, S.G. da Silva, E.V. Spinacé, A.O. Neto, Int. J. Electrochem. Sci. 13, 1893 (2018)

    CAS  Google Scholar 

  43. W.J. Zhou, S.Q. Song, W.Z. Li, Z.H. Zhou, G.Q. Sun, Q. Xin, S. Douvartzides, P. Tsiakaras, J. Power Sources 140, 50 (2005)

    CAS  Google Scholar 

  44. J.F. Moulder, J. Chasatin, Handbook of X-ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data (Perkin-Elmer Corporation Physical Electronics Division, Eden Prairie, 1992)

    Google Scholar 

  45. C. Lamy, B. Guenot, M. Cretin, G. Pourcelly, ECS Trans. 66(29), 1 (2015)

    CAS  Google Scholar 

  46. Y. Zhang, L. Zhang, S. Shuang, F. Feng, J. Qiao, Y. Guo, M.M.F. Choi, C. Dong, Anal. Lett. 43, 1055 (2010)

    CAS  Google Scholar 

  47. J. Qiao, S. Tang, Y. Tian, S. Shuang, C. Dong, M.M.F. Choi, Sens. Actuators B 138, 402 (2009)

    CAS  Google Scholar 

  48. X. Zhang, H. Fan, J. Zheng, S. Duan, Y. Huang, Y. Cui, R. Wang, Catal. Sci. Technol. 8, 4757 (2018)

    CAS  Google Scholar 

  49. W.R.P. Barros, Q. Wei, G. Zhang, S. Sun, M.R.V. Lanza, A.C. Tavares, Electrochim. Acta 162, 263 (2015)

    CAS  Google Scholar 

  50. T. Shimanouchi, Tables of Molecular Vibrational Frequencies. National Standard Reference Data System, v. 1. Secretary of Commerce on Behalf of the United States Government (1972)

  51. S. Limpattayanate, M. Hunsom, Int. Sch. Sci. Res. Innov. 9(5), 659 (2015)

    Google Scholar 

  52. Y.-J. Chiou, K.-Y. Chen, H.-M. Lin, W.-J. Liou, H.-W. Liou, S.-H. Wu, A. Mikolajczuk, M. Mazurkiewicz, A. Malolepszy, L. Stobinski, A. Borodzinski, P. Kedzierzawski, K. Kurzydlowski, S.-H. Chien, W.-C. Chen, Phys. Status Solidi A 208(8), 1778 (2011)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the FAPESP (2014/09087-4, 2014/50279-4, 2017/11937-4, 2017/21846-6, 2017/10118-0 and 2017/22976-0), CINE-SHELL (ANP)/FAPESP Grants (2017/11937-4) and CNPq (300816/2016-2, 429727/2018-6 and 429727/2018-6) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. O. Neto.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nandenha, J., Yamashita, J.Y., Souza, F.M. et al. Methane activation on PdMn/C-ITO electrocatalysts using a reactor-type PEMFC. Res Chem Intermed 46, 4383–4402 (2020). https://doi.org/10.1007/s11164-020-04210-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-020-04210-y

Keywords

Navigation