Skip to main content

Advertisement

Log in

Effect of temperature on AC conductivity of poly(butyl methacrylate)/cerium dioxide nanocomposites and applicability of different conductivity modeling studies

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

In this research, the effect of cerium dioxide (CeO2) nanoparticles on electrical properties of poly(butyl methacrylate) (PBMA) has been investigated. Polymer nanocomposites reinforced with variable contents of CeO2 nanoparticles (3, 5, 7 and 10 wt%) were fabricated by an in situ polymerization method. The formation of nanocomposites was analyzed by FTIR, XRD, SEM and TEM analysis. Also, the AC and DC conductivities of CeO2 nanoparticles-reinforced PBMA were systematically studied with respect to different loadings of CeO2 fillers. The FTIR, XRD and morphological studies revealed that the nanoparticles were well inserted and uniformly dispersed into the macromolecular chain of PBMA. The AC conductivity of PBMA/CeO2 composite increases not only with the loading of nanoparticles but also with the temperature of the system. The activation energy determined from AC electrical conductivity was found to decrease with the frequency and temperature. DC conductivity of the nanocomposites was increased with the insertion of nanoparticles into PBMA. The DC conductivity of all the composites was greater than pure PBMA. The applicability of different theoretical models such as Scarisbrick, Bueche and McCullough equations was compared with the experimentally determined DC conductivity of PBMA/CeO2 nanocomposites. These models fail to explain the conductivity of polymer composite in the entire loading of fillers. Hence, a new theoretical model is proposed in this study and it shows good agreement with the experimentally observed conductivity values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. R. Nosrati, A. Olad, F. Maryami, Res. Chem. Intermed. 44, 6219 (2018)

    Article  CAS  Google Scholar 

  2. Y.R. Uhm, J. Kim, K.J. Son, C.S. Kim, Res. Chem. Intermed. 40, 2145 (2014)

    Article  CAS  Google Scholar 

  3. X. Liu, L. Dang, X. Nai, Y. Dong, W. Li, Res. Chem. Intermed. 44, 5697 (2018)

    Article  CAS  Google Scholar 

  4. M.T. Ramesan, T. Sampreeth, J. Mater. Sci.: Mater. Electron. 28, 16181 (2017)

    CAS  Google Scholar 

  5. T. Amoli, S.M. Baghbanian, Res. Chem. Intermed. 44, 3389 (2018)

    Article  CAS  Google Scholar 

  6. I.M. Alarifi, W.S. Khan, A.S. Rahman, Y.K. Beller, R. Asmatulu, Fibers Polym. 17, 1449 (2016)

    Article  CAS  Google Scholar 

  7. M.T. Ramesan, K. Nushhat, K. Parvathi, T. Anilkumar, J. Mater. Sci.: Mater. Electron. 30, 13719 (2019)

    CAS  Google Scholar 

  8. K. Suhailath, M.T. Ramesan, J. Vinyl Addit. Technol. 25, 9 (2019)

    Article  CAS  Google Scholar 

  9. M. Golshekan, F. Shirini, Res. Chem. Intermed. 44, 4469 (2018)

    Article  CAS  Google Scholar 

  10. G. Mandal, R.B. Choudhary, Res. Chem. Intermed. 45, 3755 (2019)

    Article  CAS  Google Scholar 

  11. L. Song, F. Tang, Z. Xiao, Z. Cao, H. Zhu, A. Li, J. Electron. Mater. 47, 5896 (2018)

    Article  CAS  Google Scholar 

  12. T.K. Vishnuvardhan, V.R. Kulkarni, C. Basavaraja, S.C. Raghavendra, Bull. Mater. Sci. 29, 77 (2006)

    Article  CAS  Google Scholar 

  13. S.H. Deshmukh, D.K. Burghate, V.P. Akhare, V.S. Deogaonkar, V.T. Deshmukh, M.S. Deshmukh, Bull. Mater. Sci. 30, 51 (2006)

    Article  Google Scholar 

  14. S.M. Imran, G.N. Shao, M.S. Haider, N. Abbas, M. Hussain, H.T. Kim, J. Appl. Polym. Sci. 132, 41800 (2015)

    Article  Google Scholar 

  15. M.H. Tran, H.K. Jeong, Electrochim. Acta 180, 679 (2015)

    Article  CAS  Google Scholar 

  16. N. Chand, N. Siddiqui, Compos. Interfaces 19, 51 (2012)

    Article  CAS  Google Scholar 

  17. B.K. Bahuleyan, C. Induja, M.T. Ramesan, Polym. Compos. 40, 4816 (2019)

    Article  Google Scholar 

  18. B. Chaoqing, Y. Yijun, X. Gi, J. Appl. Polym. Sci. 104, 21 (2007)

    Article  Google Scholar 

  19. P. Jayakrishnan, M.T. Ramesan, Polym. Compos. 39, 2791 (2018)

    Article  CAS  Google Scholar 

  20. Y. Chen, Z. Li, N. Tribol, Int. 82, 211 (2015)

    CAS  Google Scholar 

  21. N. Wang, C. Zhao, Z. Shia, Y. Shao, H. Li, N. Gao, Mater. Sci. Eng., B 157, 44 (2009)

    Article  CAS  Google Scholar 

  22. M. Alamgir, A. Mallick, G.C. Nayak, S.K. Tiwari, J. Mech. Sci. Technol. 33, 4755 (2019)

    Article  Google Scholar 

  23. M.T. Ramesan, P.K. Dilsha, Mater. Res. Express 6, 105328 (2019)

    Article  CAS  Google Scholar 

  24. K. Suhailath, M.T. Ramesan, J. Therm. Anal. Calorim. 135, 2159 (2019)

    Article  CAS  Google Scholar 

  25. Z. Wenge, W.S. Chung, Compos Sci Technol. 63, 225 (2003)

    Article  Google Scholar 

  26. V.R. Madduluri, B.D. Raju, K.S.R. Rao, Res. Chem. Intermed. 45, 2749 (2019)

    Article  CAS  Google Scholar 

  27. A. Irankhah, F. Heidari, Y. Davoodbeygi, Res. Chem. Intermed. 43, 7119 (2017)

    Article  CAS  Google Scholar 

  28. P. Latha, K. Prakash, S. Karuthapandian, Res. Chem. Intermed. 39, 5223 (2013)

    Google Scholar 

  29. S. Gnanam, V. Rajendran, J. Sol-Gel. Sci. Technol. 58, 62 (2011)

    Article  CAS  Google Scholar 

  30. J. Roggenbuck, H. Schaer, T. Tsonchevea, C. Minchev, J. Hanss, M. Tiemann, Microporous Mesoporous Mater. 101, 335 (2007)

    Article  CAS  Google Scholar 

  31. M.E. Brown, A.K. Galweyl, Proc. Math. Phys. Sci. 450, 501 (1995)

    Google Scholar 

  32. R.F. Wood, J.F. Cooke, Phys. Rev. B 45, 5585 (1992)

    Article  CAS  Google Scholar 

  33. C.Y. Chiang, Y. Shin, S. Ehrman, Appl. Energy 164, 1039 (2016)

    Article  CAS  Google Scholar 

  34. P. Mannu, M. Palanisamy, G. Bangaru, S. Ramakrishnan, A. Kandasami, N. Kumar, Appl. Phys. A 125, 458 (2019)

    Article  CAS  Google Scholar 

  35. N.J.S. Sohi, B. Sambhu, D. Khastgir, Carbon 49, 1349 (2011)

    Article  CAS  Google Scholar 

  36. K. Suhailath, M.T. Ramesan, J. Thermoplast. Compos. Mater. (2019). https://doi.org/10.1177/0892705718817350

    Article  Google Scholar 

  37. F. Bueche, J. Appl. Phys. 43, 4837 (1972)

    Article  CAS  Google Scholar 

  38. R.M. Scarisbrick, J. Phys. D Appl. Phys. 6, 2098 (1973)

    Article  CAS  Google Scholar 

  39. R.L. McCullough, Compos. Sci. Technol. 22, 3 (1985)

    Article  CAS  Google Scholar 

Download references

Funding

The author (M. T. Ramesan) greatly acknowledges for the financial assistance from KSCSTE, Government of Kerala, India (Order No. 566/2017/KSCSTE).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. T. Ramesan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suhailath, K., Thomas, M. & Ramesan, M.T. Effect of temperature on AC conductivity of poly(butyl methacrylate)/cerium dioxide nanocomposites and applicability of different conductivity modeling studies. Res Chem Intermed 46, 2579–2594 (2020). https://doi.org/10.1007/s11164-020-04107-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-020-04107-w

Keywords

Navigation