Skip to main content
Log in

Synthesis of polymer-supported Brønsted acid-functionalized Zn–porphyrin complex, knotted with benzimidazolium moiety for photodegradation of azo dyes under visible-light irradiation

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

A polymer-supported Brønsted acid-functionalized Zn–porphyrin complex, knotted with benzimidazolium moiety (PSBAZnPP), has been synthesized and characterized by Fourier transform nuclear magnetic resonance (FT-NMR) and Fourier transform infrared spectroscopy (FTIR). The thermal stability was determined by thermogravimetric analysis (TGA), and surface morphology and elemental composition were investigated by scanning electron microscopy and energy-dispersive spectroscopy (SEM/EDAX). The heterogeneous PSBAZnPP showed high efficacy as a photocatalyst for degradation of azo dyes, such as methyl red (MR), methyl orange (MO) and Congo red (CR), in the presence of visible-light irradiation at ambient condition using atmospheric air/H2O2. The concentration of the dyes was measured by UV–visible spectroscopy, and the degradation of the dyes was confirmed by GC–MS analysis. Further decolorization and degradation of MO were confirmed by using ultra-high-pressure liquid chromatography (UPLC). The optimum degradation was achieved by adding 10 mg catalyst for all azo dyes for 60 min in the presence of air. The effect of scavengers was studied to indicate the most active species generated during photocatalysis. PSBAZnPP furnished a good response toward the photodegradation of MR, MO and CR under optimized conditions. Finally, the mechanism of photocatalytic degradation process was suggested. Relevant active species produced in the PSBAZnPP/H2O2 or PSBAZnPP/air system under visible light were recognized by using different types of scavengers, viz. EDTA, p-benzoquinone (PBQ), terephthalic acid (TPA), sodium azide and sodium nitrate, for determination of formation of holes, \({\text{O}}_{2}^{ \cdot }\), \({\text{OH}}^{ \cdot }\), \({}^{1}{\text{O}}_{2}\) and an aqueous electron (e), respectively. The comparative acidity of the synthesized PSBAZnPP catalyst was measured using UV–Vis and then equated to relations of the Hammett value (H0). The efficiency of catalyst correlates with a considerable proton level required for degradation of organic dyes.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Y. Yuan, H. Lu, Z. Ji, J. Zhong, M. Ding, D. Chen, Y. Li, W. Tu, D. Cao, Z. Yu, Z. Zou, Chem. Eng. J. 275, 8 (2015)

    CAS  Google Scholar 

  2. S. Xu, Y. Lv, X. Zeng, D. Cao, Chem. Eng. J. 323, 502 (2017)

    CAS  Google Scholar 

  3. Y. Pi, X. Li, Q. Xia, J. Wu, Y. Li, J. Xiao, Z. Li, Chem. Eng. J. 337, 351 (2018)

    CAS  Google Scholar 

  4. Y. Wei, Y. Zhu, Y. Jiang, Chem. Eng. J. 356, 915 (2019)

    CAS  Google Scholar 

  5. S. Pirillo, E.H. Rueda, M.L. Ferreira, Chem. Eng. J. 204–205, 65 (2012)

    Google Scholar 

  6. M. Gmurek, J.S. Miller, S. Ledakowicz, Chem. Eng. J. 210, 417 (2012)

    CAS  Google Scholar 

  7. J. Zhang, M. Feng, Y. Jiang, M. Hu, S. Li, Q. Zhai, Chem. Eng. J. 191, 236 (2012)

    CAS  Google Scholar 

  8. H. Ghafuri, Z. Movahedinia, R. Rahimi, H.R.E. Zand, RSC Adv. 5, 60172 (2015)

    CAS  Google Scholar 

  9. R.V. Kandisa, K.V.N. Saibaba, J. Bioremediation Biodegrad. 07 (2016)

  10. J.M. Dąbrowski, B. Pucelik, M.M. Pereira, L.G. Arnaut, W. MacYk, G. Stochel, RSC Adv. 5, 93252 (2015)

    Google Scholar 

  11. H. Xu, J.X. Xiang, P. Wu, Y.F. Lu, S. Zhang, Z.Y. Xie, Z.Z. Gu, RSC Adv. 6, 45617 (2016)

    CAS  Google Scholar 

  12. M.O. Ansari, M.M. Khan, S.A. Ansari, M.H. Cho, New J. Chem. 39, 8381 (2015)

    CAS  Google Scholar 

  13. J.H. Castillo-Ledezma, J.L.S. Salas, A. López-Malo, E.R. Bandala, Eur. Food Res. Technol. 233, 825 (2011)

    CAS  Google Scholar 

  14. G. Cernuto, N. Masciocchi, A. Cervellino, G.M. Colonna, A. Guagliardi, J. Am. Chem. Soc. 133, 3114 (2011)

    CAS  PubMed  Google Scholar 

  15. D. Chatterjee, S. Dasgupta, J. Photochem. Photobiol. C Photochem. Rev. 6, 186 (2005)

    CAS  Google Scholar 

  16. Y.I. Choi, S. Lee, S.K. Kim, Y. Il Kim, D.W. Cho, M.M. Khan, Y. Sohn, J. Alloys Compd. 675, 46 (2016)

    CAS  Google Scholar 

  17. M. Fujitsuka, T. Majima, J. Photochem. Photobiol. C Photochem. Rev. 35, 38 (2018)

    CAS  Google Scholar 

  18. M. Silva, M.E. Azenha, M.M. Pereira, H.D. Burrows, M. Sarakha, C. Forano, M.F. Ribeiro, A. Fernandes, Appl. Catal. B Environ. 100, 1 (2010)

    CAS  Google Scholar 

  19. Q. Wu, X. Hao, X. Feng, Y. Wang, Y. Li, E. Wang, X. Zhu, X. Pan, Inorg. Chem. Commun. 22, 137 (2012)

    CAS  Google Scholar 

  20. M. Cheng, W. Ma, C. Chen, J. Yao, J. Zhao, Appl. Catal. B Environ. 65, 217 (2006)

    CAS  Google Scholar 

  21. B. Li, L. Shao, B. Zhang, R. Wang, M. Zhu, X. Gu, J. Colloid Interface Sci. 505, 653 (2017)

    CAS  PubMed  Google Scholar 

  22. B. Li, Y. Hao, X. Shao, H. Tang, T. Wang, J. Zhu, S. Yan, J. Catal. 329, 368 (2015)

    CAS  Google Scholar 

  23. B. Li, R. Wang, X. Shao, L. Shaob, B. Zhang, Inorg. Chem. Front. 4, 2088 (2017)

    CAS  Google Scholar 

  24. B. Li, Y. Hao, B. Zhang, X. Shao, L. Hu, Applied Catal. A Gen. 531, 1 (2017)

    CAS  Google Scholar 

  25. Y. Xiao, X. Tao, G. Qiu, Z. Dai, P. Gao, B. Li, J. Colloid Interface Sci. 550, 99 (2019)

    CAS  PubMed  Google Scholar 

  26. M. Rabbani, M. Heidari-Golafzani, R. Rahimi, Mater. Chem. Phys. 179, 35 (2016)

    CAS  Google Scholar 

  27. Z. Zhang, H. Liu, J. Xu, N. Zhang, Photochem. Photobiol. Sci. 16, 1194 (2017)

    CAS  PubMed  Google Scholar 

  28. S. Murphy, C. Saurel, A. Morrissey, J. Tobin, M. Oelgemöller, K. Nolan, Appl. Catal. B Environ. 119–120, 156 (2012)

    Google Scholar 

  29. H. Wang, D. Zhou, S. Shen, J. Wan, X. Zheng, L. Yu, D.L. Phillips, RSC Adv. 4, 28978 (2014)

    CAS  Google Scholar 

  30. Y. Li, Q. Duan, H. Wang, B. Gao, N. Qiu, Y. Li, J. Photochem. Photobiol. A Chem. 356, 370 (2018)

    CAS  Google Scholar 

  31. N. Qiu, Y. Li, S. Han, G. Cui, T. Satoh, T. Kakuchi, Q. Duan, J. Photochem. Photobiol. A Chem. 283, 38 (2014)

    CAS  Google Scholar 

  32. J.H. Cai, J.W. Huang, H.C. Yu, L.N. Ji, J. Taiwan Inst. Chem. Eng. 43, 958 (2012)

    CAS  Google Scholar 

  33. A.G. Khiratkar, P.N. Muskawar, P.R. Bhagat, RSC Adv. 6, 105087 (2016)

    CAS  Google Scholar 

  34. K.R. Balinge, A.G. Khiratkar, P.R. Bhagat, J. Mol. Liq. 242, 1085 (2017)

    CAS  Google Scholar 

  35. K.R. Balinge, A.G. Khiratkar, P.N. Muskawar, K. Thenmozhi, P.R. Bhagat, Res. Chem. Intermed. 44, 2075 (2018)

    CAS  Google Scholar 

  36. P.N. Muskawar, S. Senthil Kumar, P.R. Bhagat, J. Mol. Catal. A Chem. 380, 112 (2013)

    CAS  Google Scholar 

  37. R. Rahimi, M.M. Moghaddas, S. Zargari, J. Sol–Gel. Sci. Technol. 65, 420 (2013)

    CAS  Google Scholar 

  38. H. Lv, X. Zhao, H. Niu, S. He, Z. Tang, F. Wu, J.P. Giesy, J. Hazard. Mater. 369, 494 (2019)

    CAS  PubMed  Google Scholar 

  39. K.S. Min, R.S. Kumar, J.H. Lee, K.S. Kim, S.G. Lee, Y.A. Son, Dye. Pigment. 160, 37 (2019)

    CAS  Google Scholar 

  40. Q. Li, T. Zhao, M. Li, W. Li, B. Yang, D. Qin, K. Lv, X. Wang, L. Wu, X. Wu, J. Sun, Appl. Catal. B Environ. 249, 1 (2019)

    CAS  Google Scholar 

  41. Z. Feng, J. Yu, J. Kong, T. Wang, Chem. Eng. J. 294, 236 (2016)

    CAS  Google Scholar 

  42. P. Kharazi, R. Rahimi, M. Rabbani, Mater. Res. Bull. 103, 133 (2018)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge VIT-SIF SAS and the SEM Facility at SBST VIT, Vellore, for instrumentation facilities. The authors also thank VIT for providing ‘VIT SEED GRANT’ for carrying out this research work. We kindly acknowledge VIT Management, Department of Chemistry (SAS), “Smart Materials Laboratory for Biosensing and Catalysis.” We would also like to extend our thanks to Mr. Sagar Krushnarao Datir for his valuable advice and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pundlik R. Bhagat.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 4639 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khajone, V.B., Bhagat, P.R. Synthesis of polymer-supported Brønsted acid-functionalized Zn–porphyrin complex, knotted with benzimidazolium moiety for photodegradation of azo dyes under visible-light irradiation. Res Chem Intermed 46, 783–802 (2020). https://doi.org/10.1007/s11164-019-03990-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-019-03990-2

Keywords

Navigation