Skip to main content
Log in

Stirring-ageing technique to develop zirconium-pillared bentonite clay along with its surface profiling using various spectroscopic techniques

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

The pillared clays are getting wide attention due to the easiness in tailoring their surface for customized applications. In our laboratory, we have adopted a novel synthetic route to pillar zirconium species within intercalation spaces of bentonite clay through stirring-ageing technique and prepared the zirconium-pillared bentonite clay (ZPBC). A series of experiments conducted to optimize the stirring-ageing time span revealed that 2–4 h span is sufficient for getting a good yield of ZPBC. The synthesized ZPBC was characterized using certain well-developed sophisticated techniques to obtain their physical, structural and morphological properties. The high surface area 109 m2 g−1 noticed for ZPBC is suitable in retaining the chemical moieties of special interest during pollutant removal processes. X-ray fluorescence studies revealed that there is an increase in wt% of Zr (4.76%) in pillared clay compared to Na-bentonite which indicates that Zr has been successfully loaded on the surface of parent clay during pillarization. The mineralogical composition and the gradual changes in the interlayer spacing of parent and pillared clay are well established using X-ray diffraction technique. The Raman spectrum identifies changes in the lattice vibration modes of ZPBC as pillaring takes place. The surface topographical changes that occurred in clay after modification were revealed from the scanning electron microscopy images. The prepared ZPBC were tested successfully for the removal of phosphate from aqueous solution and obtained a maximum adsorption capacity 58.83 mg g−1 at 30 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. X. Liu, X. Xu, J. Sun, A. Alsaedi, T. Hayath, J. Li, X. Wang, Chem. Eng. J. 343, 217 (2018)

    Article  CAS  Google Scholar 

  2. X. Liu, J. Sun, X. Xu, A. Alsaedi, T. Hayat, J. Li, Chem. Eng. J. 360, 941 (2019)

    Article  CAS  Google Scholar 

  3. X. Liu, J. Wu, S. Zhang, C. Ding, G. Sheng, A. Alsaedi, T. Hayat, J. Li, Y. Song, ACS Sustain. Chem. Eng. 7, 12 (2019)

    Google Scholar 

  4. S. Duan, X. Xu, X. Liu, Y. Wang, T. Hayat, A. Alsaedi, Y. Meng, J. Li, J. Colloid Interface Sci. 513, 92 (2018)

    Article  CAS  PubMed  Google Scholar 

  5. Z. Chen, J. Li, Z. Cheng, S. Zuo, App. Clay Sci. 163, 227 (2018)

    Article  CAS  Google Scholar 

  6. Z. Cheng, Z. Chen, J. Li, S. Zuo, P. Yang, Appl. Surf. Sci. 459, 32 (2018)

    Article  CAS  Google Scholar 

  7. J. Li, M. Hu, S. Zuo, X. Wang, Curr. Opin. Chem. Eng. 20, 93 (2018)

    Article  Google Scholar 

  8. L. Chmielarz, P. Kustrowski, Z. Piwowarska, B. Dudek, B. Gil, M. Michalik, Appl. Catal. B Environ. 88, 331 (2009)

    Article  CAS  Google Scholar 

  9. S. Arellano-Cardenas, T. Gallardo-Velazquez, G. Osorio-Revilla, M.S. Lopez-Cortez, Water Environ. Res. 80, 60 (2008)

    Article  CAS  PubMed  Google Scholar 

  10. S.A. Garea, A.I. Mihai, A. Ghebaur, C. Nistor, A. Sarbu, Int. J. Pharm. 491, 299 (2015)

    Article  CAS  PubMed  Google Scholar 

  11. R.X. Liu, J.L. Guo, H.X. Tang, J. Colloid Interface Sci. 248, 268 (2002)

    Article  CAS  Google Scholar 

  12. J. Xu, Y. Li, Y. Xie, Non-Metal Mines 25, 44 (2006)

    CAS  Google Scholar 

  13. S. Yamanaka, G.W. Brindley, Clay Clay Miner. 27, 119 (1979)

    Article  CAS  Google Scholar 

  14. G.J.J. Bartley, R. Burch, Appl. Catal. 19, 175 (1985)

    Article  CAS  Google Scholar 

  15. A. Romero, F. Dorado, I. Asencio, P.B. Garcia, J.L. Valverde, Clay Clay Minerals 54, 737 (2006)

    Article  CAS  Google Scholar 

  16. M.E.R. Jalil, R.S. Vieira, D. Azevedo, M. Baschini, K. Sapag, Appl. Clay Sci. 71, 55 (2013)

    Article  CAS  Google Scholar 

  17. A.M. Georgescu, F. Nardou, V. Zichil, I.D. Nistor, Appl. Clay Sci. 152, 44 (2018)

    Article  CAS  Google Scholar 

  18. K. Reitzel, F. Andersen, S. Egemose, H.S. Jensen, Water Res. 47, 2787 (2013)

    Article  CAS  PubMed  Google Scholar 

  19. H. Mahadevan, V.V. Dev, K.A. Krishnan, A. Abraham, O.C. Ershana, Environ. Technol. Innov. 9, 1 (2018)

    Article  Google Scholar 

  20. J. Schick, P. Caullet, J.L. Paillaud, J. Patarin, S. Freitag, C.M. Callarec, J. Porous Mater. 19, 405 (2012)

    Article  CAS  Google Scholar 

  21. M.E. Bouraie, A.A. Masoud, Appl. Clay Sci. 140, 157 (2017)

    Article  CAS  Google Scholar 

  22. D. Hong, Z. Yanling, D. Qianlin, W. Junwen, Z. Kan, D. Guangyue, X. Xianmei, D. Chuanmin, J. Rare Earths 35, 984 (2017)

    Article  Google Scholar 

  23. K.A. Krishnan, A. Haridas, J. Hazard. Mater. 152, 527 (2008)

    Article  CAS  PubMed  Google Scholar 

  24. X. Du, Q. Han, J. Li, H. Li, J. Taiwan Inst. Chem. Eng. 76, 167 (2017)

    Article  CAS  Google Scholar 

  25. D.M. Manohar, B.F. Noeline, T.S. Anirudhan, Appl. Clay Sci. 31, 194 (2006)

    Article  CAS  Google Scholar 

  26. R. James, G.A. Parks, in Surface and Colloid Science, ed. by D.T. Matpec (Lenum Press, New York, 1982)

    Google Scholar 

  27. APHA, Standard Methods for the Examination of Water and Wastewater, 20th edition, APHA, AWWA, WEF, Washington, DC, USA (1998)

  28. J.-Q. Jiang, C. Cooper, S. Ouki, Chemosphere 47, 711 (2002)

    Article  CAS  PubMed  Google Scholar 

  29. F.G. Alabarse, R.V. Conceicao, N.M. Balzaretti, F. Schenato, A.M. Xavier, Appl. Clay Sci. 51, 202 (2011)

    Article  CAS  Google Scholar 

  30. J.G. Smith, Geogr. Ann. A. 85, 1 (2003)

    Article  Google Scholar 

  31. W.E. Dean, J. Sediment. Petrol. 44, 242 (1974)

    CAS  Google Scholar 

  32. B.G. Mishra, G.R. Rao, J. Porous Mat. 12, 171 (2005)

    Article  CAS  Google Scholar 

  33. F. Kooli, Y. Liu, K. Hbaieb, R. Al-Faze, Micropor. Mesopor. Mat. 226, 482 (2016)

    Article  CAS  Google Scholar 

  34. K. Ohtsuka, Y. Hayashi, M. Suda, Chem. Mater. 5, 1823 (1993)

    Article  CAS  Google Scholar 

  35. L. Zhironga, Md Azhar Uddinb, S. Zhanxue, Spectrochim. Acta A Mol. Biomol. Spectrosc. 79, 1013 (2011)

    Article  CAS  Google Scholar 

  36. J. Baloyi, T. Ntho, J. Moma, J. Porous Mater. 26, 583 (2019)

    Article  CAS  Google Scholar 

  37. P.S. Kumar, T. Prot, L. Korving, K.J. Keesman, I. Dugulan, M.C.M. van Loosdrecht, G.J. Witkamp, Chem. Eng. J. 326, 231 (2017)

    Article  CAS  Google Scholar 

  38. S. Mnasri, N. Hamdi, N.F. Srasra, E. Srasra, Arab. J. Chem. 10, 1175 (2017)

    Article  CAS  Google Scholar 

  39. T.S. Anirudhan, C.D. Bringle, S. Rijith, J. Environ. Radioact. 101, 267 (2010)

    Article  CAS  PubMed  Google Scholar 

  40. E. Srasa, F. Bergaya, J.J. Fripia, Clay. Clay Miner. 42, 237 (1994)

    Article  Google Scholar 

  41. J.T. Kloprogge, Dev. Clay Sci. 8, 411 (2017)

    Article  Google Scholar 

  42. F. Tomul, Appl. Surf. Sci. 258, 1836 (2011)

    Article  CAS  Google Scholar 

  43. G.M. do Nascimento, V.R.L. Constantino, R. Landers, M.L.A. Temperini, Polymer 47, 6131 (2006)

    Article  CAS  Google Scholar 

  44. A. Wang, J.J. Freeman, B.L. Jolliff, J. Raman Spectrosc. 46, 829 (2015)

    Article  CAS  Google Scholar 

  45. L. Bergaoui, A. Ghorbel, J.F. Lambert, Stud. Surf. Sci. Catal. 142, 903 (2002)

    Article  Google Scholar 

  46. W. Huang, J. Chen, F. He, J. Tang, D. Li, Y. Zhu, Y. Zhang, Appl. Clay Sci. 104, 252 (2015)

    Article  CAS  Google Scholar 

  47. N.S. Al-Zubaidi, A.A. Alwasiti, D. Mahmood, Egypt. J. Pet. 26, 811 (2017)

    Article  Google Scholar 

  48. L. Borgnino, M.J. Avena, C.P. De Pauli, Colloids Surf. A. Physicochem. Eng. Asp. 341, 46 (2009)

    Article  CAS  Google Scholar 

  49. J. Lin, H. Wang, Y. Zhan, Z. Zhang, Environ. Earth Sci. 75, 942 (2016)

    Article  CAS  Google Scholar 

  50. J. Lu, H. Liu, R. Liu, X. Zhao, L. Sun, J. Qu, Powder Technol. 233, 146 (2013)

    Article  CAS  Google Scholar 

  51. X. Liu, L. Zhang, Powder Technol. 277, 112 (2015)

    Article  CAS  Google Scholar 

  52. S. Lagergren, Kungliga Svenska Vetenskapsakademiens Handlingar 24, 1 (1898)

    Google Scholar 

  53. Y.S. Ho, G. McKay, D.A.G. Wase, C.F. Forster, Adsorpt. Sci. Technol. 18, 639 (2000)

    Article  CAS  Google Scholar 

  54. Y. Gao, N. Chen, W. Hu, C. Feng, B. Zhang, Q. Ning, B. Xu, J. Solution Chem. 42, 691 (2013)

    Article  CAS  Google Scholar 

  55. J. Zhang, Z. Shen, W. Shan, Z. Chen, Z. Mei, Y. Lei, W. Wang, J. Environ. Sci. 22, 507 (2010)

    Article  CAS  Google Scholar 

  56. I. Langmuir, J. Am. Chem. Soc. 40, 1361 (1918)

    Article  CAS  Google Scholar 

  57. H.M.F. Freundlich, J. Phys. Chem. 57, 385 (1906)

    CAS  Google Scholar 

  58. R.R. Pawar, P. Gupta, Lalhmunsiama, H.C. Bajaj, S.-M. Lee, Sci. Total Environ. 572, 1222 (2016)

    Article  CAS  PubMed  Google Scholar 

  59. M. Tanyol, V. Yonten, V. Demir, Water Air Soil Pollut. 226, 269 (2015)

    Article  CAS  Google Scholar 

  60. Q. Liu, P. Hu, J. Wang, L. Zhang, R. Huang, J. Taiwan Inst. Chem. Eng. 59, 311 (2016)

    Article  CAS  Google Scholar 

  61. S. Tian, P. Jiang, P. Ning, Y. Su, Chem. Eng. J. 151, 141 (2009)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are thankful to Dr. N. Purnachandra Rao, Director, NCESS, for providing laboratory and knowledge resource facilities. The instrumental facilities in NCESS under SWQM (Sea Water Quality Monitoring) programme funded by ICMAM, Ministry of Earth Sciences and Central Chemical Laboratory (CCL), is also acknowledged. The Raman spectra provided by the Geo Fluids Research Laboratory (GFRL) in NCESS is highly appreciated. The authors are also thankful to the X-RF, X-RD and SEM–EDS laboratories in NCESS for providing the respective spectral data. The particle size and surface area analysis was carried out in Particle Size Analysis Laboratory, NCESS, and their service is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Anoop Krishnan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahadevan, H., Anoop Krishnan, K., Pillai, R.R. et al. Stirring-ageing technique to develop zirconium-pillared bentonite clay along with its surface profiling using various spectroscopic techniques. Res Chem Intermed 46, 639–660 (2020). https://doi.org/10.1007/s11164-019-03982-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-019-03982-2

Keywords

Navigation