Skip to main content
Log in

A photocatalytic comparison study between tin complex and carboxylic acid derivatives of porphyrin/TiO2 composites

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

We synthesized a novel dihydroxotin(IV) porphyrin complex with full structural confirmation. The tin complex further converted to TiO2 composite (PR-2–TiO2) and photodegradation of methylene blue property compared with carboxylic-anchored porphyrin photocatalyst (PR-3–TiO2), basic porphyrin photocatalyst (PR-1–TiO2) and bare TiO2. PR-1–TiO2 showed slight photocatalytic activity, which was better than that of bare TiO2. The photocatalytic performances of tin-porphyrin (PR-2–TiO2) and carboxylic anchor porphyrin (PR-3–TiO2) were comparable, and tin-porphyrin catalyst showed similar stability in their reusability test result in comparison with carboxylic-anchored porphyrin catalyst. Finally, we showed a plausible structure for the tin porphyrin complex between the axial –OH ligand and TiO2 and a suitable mechanism with theoretical comparison for the photocatalytic process.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 2
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. T.L. Thompson, J.T. Yates Jr., Chem. Rev. 106, 4428 (2006)

    CAS  PubMed  Google Scholar 

  2. X.B. Chen, S.S. Mao, Chem. Rev. 107, 2891 (2007)

    CAS  PubMed  Google Scholar 

  3. X.B. Chen, C. Burda, J. Am. Chem. Soc. 130, 5018 (2008)

    CAS  PubMed  Google Scholar 

  4. J. Ananpattarachai, P. Kajitvichyanukul, S. Seraphin, J. Hazard. Mater. 168, 253 (2009)

    CAS  PubMed  Google Scholar 

  5. G. Mele, R.D. Sole, G. Vasapollo, E.G. López, L. Palmisano, M. Schiavello, J. Catal. 217, 334 (2003)

    CAS  Google Scholar 

  6. J. Wang, J. Li, Y.P. Xie, C.W. Li, G.X. Han, L.Q. Zhang, R. Xu, X.D. Zhang, J. Environ. Manag. 91, 677 (2010)

    CAS  Google Scholar 

  7. S. Chu, X. Zheng, F. Kong, G. Wu, L. Luo, Y. Guo, H. Liu, Y. Wang, H. Yu, Z. Zou, Mater. Chem. Phys. 129, 1184 (2011)

    CAS  Google Scholar 

  8. A. Hagfeld, G. Boschlo, L. Sun, L. Kloo, H. Pettersson, Chem. Rev. 110, 6595 (2010)

    Google Scholar 

  9. H.Y. Huang, X.T. Gu, J.H. Zhou, K. Ji, H.L. Liu, Y.Y. Feng, Catal. Commun. 11, 58 (2009)

    CAS  Google Scholar 

  10. P. Moro, M.P. Donzello, C. Ercolani, F. Monacelli, G. Moretti, J. Photochem. Photobiol. A 220, 77 (2011)

    CAS  Google Scholar 

  11. Y. Chen, A. Li, Z.H. Huang, L.N. Wang, F. Kang, Nanomaterials 6, 51 (2016)

    PubMed Central  Google Scholar 

  12. K. Morita, K. Takijiri, K. Sakai, H. Ozawa, Dalton Trans. 46, 15181 (2017)

    CAS  PubMed  Google Scholar 

  13. D.G. Whitten, J.C.N. Yau, F.A. Carroll, J. Am. Chem. Soc. 93, 2291 (1971)

    CAS  Google Scholar 

  14. D.P. Arnold, J. Blok, Coord. Chem. Rev. 248, 299 (2004)

    CAS  Google Scholar 

  15. H.J. Kim, N.K. Shee, K.-M. Park, H.-J. Kim, Inorg. Chim. Acta 488, 1 (2019)

    CAS  Google Scholar 

  16. W. Kim, J. Park, H.J. Jo, H.-J. Kim, W. Choi, J. Phys. Chem. C 112, 491 (2008)

    CAS  Google Scholar 

  17. S. Wang, I. Tabata, K. Hisada, T. Hori, J. Porphyr. Phthalocyanines 7, 199 (2003)

    CAS  Google Scholar 

  18. G.D. Fallon, M.A.-P. Lee, S.J. Langford, P.J. Nichols, Org. Lett. 4, 1895 (2002)

    CAS  PubMed  Google Scholar 

  19. M.Y. Duan, J. Li, G. Mele, C. Wang, X.F. Lu, V. Giuseppe, F.X. Zhang, J. Phys. Chem. C 114, 7857 (2010)

    CAS  Google Scholar 

  20. K.S. Min, R.S. Kumar, J.H. Lee, K.S. Kim, S.G. Lee, Y.-A. Son, Dyes Pigments 160, 37 (2019)

    CAS  Google Scholar 

  21. K.S. Min, R. Manivannan, Y.-A. Son, Dyes Pigments 162, 8 (2019)

    CAS  Google Scholar 

  22. H. Kim, R. Manivannan, G. Heo, J.W. Ryu, Y.-A. Son, Res. Chem. Intermed. 45, 1 (2019)

    Google Scholar 

  23. R.S. Kumar, H. Jeong, J. Jeong, R.K. Chitumalla, M.J. Ko, K.S. Kumar, J. Jange, Y.-A. Son, RSC Adv. 6, 41294 (2016)

    CAS  Google Scholar 

  24. J. Jeong, R.S. Kumar, N. Mergu, Y.-A. Son, Inorg. Chim. Acta 469, 453 (2018)

    CAS  Google Scholar 

  25. M.A. Ahmed, Z.M. Abou-Gamra, H.A.A. Medien, M.A. Hamza, J. Photochem. Photobiol. B 176, 25 (2017)

    CAS  PubMed  Google Scholar 

  26. W. Li, R. Liang, A. Hu, Z. Huang, Y.N. Zhou, RSC Adv. 4, 36959 (2014)

    CAS  Google Scholar 

  27. C. Huang, Y. Lv, Q. Zhou, S. Kanga, Q. Xl, J. Mu, Ceram. Int. 40, 7093 (2014)

    CAS  Google Scholar 

  28. G.M. Bancroft, I. Adams, H. Lampe, T.K. Sham, J. Electron Spectrosc. Relat. Phenom. 9, 191 (1976)

    CAS  Google Scholar 

  29. G.T. Baronetti, S.R. de Miguel, O.A. Scelza, A.A. Castro, Appl. Catal. 24, 109 (1986)

    CAS  Google Scholar 

  30. G. Mele, R.D. Sole, G. Vasapollo, G. Marcı, V. GarcıaLopez, L. Palmisano, J.M. Coronado, M.D.H. Alonso, C. Malitesta, M.R. Gualcito, J. Phys. Chem. B 109, 12347 (2005)

    CAS  PubMed  Google Scholar 

  31. J. Yu, G. Dai, Q. Xiang, M. Jaroniec, J. Mater. Chem. 21, 1049 (2011)

    CAS  Google Scholar 

  32. F. Chen, Y. Cao, D. Jia, Chem. Eng. J. 234, 223 (2013)

    CAS  Google Scholar 

  33. H. Pouretedal, M. Keshavarz, Int. J. Phys. Sci. 6, 6268 (2011)

    CAS  Google Scholar 

  34. Z.-X. Li, B.-L. Yang, Y.-F. Jiang, C.-Y. Yu, L. Zhang, Cryst. Growth Des. 18, 979 (2018)

    CAS  Google Scholar 

  35. H.J. Jo, S.H. Jung, H.-J. Kim, Bull. Korean Chem. Soc. 25, 1869 (2004)

    CAS  Google Scholar 

  36. C.J.P. Monteiro, M.M. Pereira, M.E. Azenha, H.D. Burrows, C. Serpa, L.G. Arnaut, M.J. Tapia, M. Sarakha, P. Wong-Wah-Chung, S. Navaratnam, Photochem. Photobiol. Sci. 4, 617 (2005)

    CAS  PubMed  Google Scholar 

  37. F.L. Guern, C.F. Bied-Charreton, J. Bull. Soc. Chim. Fr. 130, 753 (1993)

    Google Scholar 

  38. V. Etacheri, C.D. Valentin, J. Schneider, D. Bahnemann, S.C. Pillai, J. Photochem. Photobiol. C Photochem. Rev. 25, 1 (2015)

    CAS  Google Scholar 

  39. X. Zhao, Y. Wang, W. Feng, H. Lei, J. Li, RSC Adv. 7, 52738 (2017)

    CAS  Google Scholar 

  40. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson et al., Gaussian 09, Revision B.01 (Gaussian Inc., Wallingford, 2010)

    Google Scholar 

  41. J. Fujisawa, T. Eda, M. Hanaya, Chem. Phys. Lett. 685, 23 (2017)

    CAS  Google Scholar 

  42. J. Jeong, R.S. Kumar, N. Mergu, Y.-A. Son, J. Mol. Struct. 1147, 469 (2017)

    CAS  Google Scholar 

  43. C. Kim, R.S. Kumar, N. Mergu, K. Jun, Y.A. Son, J. Nanosci. Nanotechnol. 18, 3192 (2017)

    Google Scholar 

Download references

Acknowledgements

This study was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning (Grant No. NRF-2017R1E1A1A01074266). This work was supported by the Industrial Fundamental Technology Development Program (10076350) funded by the Ministry of Trade, Industry and Energy (MOTIE) of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young-A Son.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, R.S., Kim, H., Mergu, N. et al. A photocatalytic comparison study between tin complex and carboxylic acid derivatives of porphyrin/TiO2 composites. Res Chem Intermed 46, 313–328 (2020). https://doi.org/10.1007/s11164-019-03952-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-019-03952-8

Keywords

Navigation