Skip to main content

Advertisement

Log in

Low-dimensional II–VI semiconductors for photocatalytic hydrogen generation

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

The rising demand for clean energy requires efficient as well as simple and cost-effective systems to be found to convert solar energy into electricity or chemical fuels. Colloidal nanomaterials, especially metal chalcogenides, are among the most promising candidates for energy applications. This is because of their well-developed surface chemistries, ease of heterostructure creation, superior light-harvesting abilities, and tunable optical and electronic properties, which stem from quantum confinement effects. The photocatalytic efficiencies of metal chalcogenides, however, are limited by slow redox processes that occur on their surfaces. These redox processes occur on timescales much slower than native charge carrier recombination processes. Consequently, to increase photocatalytic efficiencies, photogenerated charge carrier lifetimes must be increased. This entails enhancing the spatial separation of electrons and holes in order to prevent their recombination. This review outlines the most popular strategies employed today to improve the photocatalytic performance of II–VI nanostructures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

a adapted with permission from Ref. [28]. Copyright 2011 American Chemical Society. b adapted with permission from Ref. [32]. Copyright 2012 American Chemical Society. c adapted from Ref. [34] with permission from the PCCP Owner Societies

Fig. 2

Adapted with permission from Ref. [45]. Copyright 2018 American Chemical Society

Fig. 3

a Reprinted with permission from Ref. [47]. Copyright 2010 American Chemical Society. b Adapted with permission from Ref. [48]. Copyright WILEY–VCH Verlag GmbH & Co. KGaA, Weinheim

Fig. 4

a Adapted with permission from Ref. [9]. Copyright © 2018, Springer Nature. b Adapted with permission from Ref. [50]. Copyright 2011 American Chemical Society. c Reprinted with permission from Ref. [52]. Copyright AIP Publishing. d Adapted with permission from Ref. [39]. Copyright © 2014, Springer Nature

Similar content being viewed by others

References

  1. J. Giblin, M. Kuno, J. Phys. Chem. Lett. 1, 3340 (2010)

    Article  CAS  Google Scholar 

  2. V. Protasenko, D. Bacinello, M. Kuno, J. Phys. Chem. B 110, 25322 (2006)

    Article  CAS  PubMed  Google Scholar 

  3. J. Giblin, F. Vietmeyer, M.P. McDonald, M. Kuno, Nano Lett. 11, 3307 (2011)

    Article  CAS  PubMed  Google Scholar 

  4. Y. Gao, X. Peng, J. Am. Chem. Soc. 137, 4230 (2015)

    Article  CAS  PubMed  Google Scholar 

  5. S. Ithurria, M.D. Tessier, B. Mahler, R.P.S.M. Lobo, B. Dubertret, A.L. Efros, Nat. Mater. 10, 936 (2011)

    Article  CAS  Google Scholar 

  6. J. Park, S. Park, R. Selvaraj, Y. Kim, RSC Adv. 5, 52737 (2015)

    Article  CAS  Google Scholar 

  7. S.N. Jamble, K.P. Ghoderao, R.B. Kale, Res. Chem. Intermed. 45, 1381 (2019)

    Article  CAS  Google Scholar 

  8. S. Lian, M.S. Kodaimati, D.S. Dolzhnikov, R. Calzada, E.A. Weiss, J. Am. Chem. Soc. 139, 8931 (2017)

    Article  CAS  PubMed  Google Scholar 

  9. C.M. Wolff, P.D. Frischmann, M. Schulze, B.J. Bohn, R. Wein, P. Livadas, M.T. Carlson, F. Jäckel, J. Feldmann, F. Würthner, J.K. Stolarczyk, Nat. Energy 3, 862 (2018)

    Article  CAS  Google Scholar 

  10. S.Q. Peng, Y.J. Peng, Y.X. Li, G.X. Lu, S.B. Li, Res. Chem. Intermed. 35, 739 (2009)

    Article  CAS  Google Scholar 

  11. S.C. Moon, Y. Matsumura, M. Kitano, M. Matsuoka, M. Anpo, Res. Chem. Intermed. 29, 233 (2003)

    Article  CAS  Google Scholar 

  12. F. Dubois, B. Mahler, B. Dubertret, E. Doris, C. Mioskowski, J. Am. Chem. Soc. 129, 482 (2007)

    Article  CAS  PubMed  Google Scholar 

  13. Y. Ben-Shahar, F. Scotognella, N. Waiskopf, I. Kriegel, S. Dal Conte, G. Cerullo, U. Banin, Small 11, 462 (2015)

    Article  CAS  PubMed  Google Scholar 

  14. X. Peng, M.C. Schlamp, A.V. Kadavanich, A.P. Alivisatos, J. Am. Chem. Soc. 119, 7019 (1997)

    Article  CAS  Google Scholar 

  15. S. Kim, B. Fisher, H.-J. Eisler, M. Bawendi, J. Am. Chem. Soc. 125, 11466 (2003)

    Article  CAS  PubMed  Google Scholar 

  16. J.A. Goebl, R.W. Black, J. Puthussery, J. Giblin, T.H. Kosel, M. Kuno, J. Am. Chem. Soc. 130, 14822 (2008)

    Article  CAS  PubMed  Google Scholar 

  17. B.O. Dabbousi, J. Rodriguez-Viejo, F.V. Mikulec, J.R. Heine, H. Mattoussi, R. Ober, K.F. Jensen, M.G. Bawendi, J. Phys. Chem. B 101, 9463 (1997)

    Article  CAS  Google Scholar 

  18. M.G. Alemseghed, T.P.A. Ruberu, J. Vela, Chem. Mater. 23, 3571 (2011)

    Article  CAS  Google Scholar 

  19. U. Banin, Y. Ben-Shahar, K. Vinokurov, Chem. Mater. 26, 97 (2014)

    Article  CAS  Google Scholar 

  20. Y. Ben-Shahar, F. Scotognella, I. Kriegel, L. Moretti, G. Cerullo, E. Rabani, U. Banin, Nat. Commun. 7, 10413 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. K. Wu, H. Zhu, Z. Liu, W. Rodríguez-Córdoba, T. Lian, J. Am. Chem. Soc. 134, 10337 (2012)

    Article  CAS  PubMed  Google Scholar 

  22. M. Zhukovskyi, P. Tongying, H. Yashan, Y. Wang, M. Kuno, ACS Catal. 5, 6615 (2015)

    Article  CAS  Google Scholar 

  23. T. O’Connor, M.S. Panov, A. Mereshchenko, A.N. Tarnovsky, R. Lorek, D. Perera, G. Diederich, S. Lambright, P. Moroz, M. Zamkov, ACS Nano 6, 8156 (2012)

    Article  CAS  PubMed  Google Scholar 

  24. K. Wu, Z. Chen, H. Lv, H. Zhu, C.L. Hill, T. Lian, J. Am. Chem. Soc. 136, 7708 (2014)

    Article  CAS  PubMed  Google Scholar 

  25. C. Pu, X. Peng, J. Am. Chem. Soc. 138, 8134 (2016)

    Article  CAS  PubMed  Google Scholar 

  26. H. Zhu, N. Song, T. Lian, J. Am. Chem. Soc. 133, 8762 (2011)

    Article  CAS  PubMed  Google Scholar 

  27. D. Kong, Y. Jia, Y. Ren, Z. Xie, K. Wu, T. Lian, J. Phys. Chem. C 122, 14091 (2018)

    Article  CAS  Google Scholar 

  28. A. Thibert, F.A. Frame, E. Busby, M.A. Holmes, F.E. Osterloh, D.S. Larsen, J. Phys. Chem. Lett. 2, 2688 (2011)

    Article  CAS  Google Scholar 

  29. L. Huang, X. Wang, J. Yang, G. Liu, J. Han, C. Li, J. Phys. Chem. C 117, 11584 (2013)

    Article  CAS  Google Scholar 

  30. P. Wang, J. Zhang, H. He, X. Xu, Y. Jin, Nanoscale 6, 13470 (2014)

    Article  CAS  PubMed  Google Scholar 

  31. P. Wang, M. Wang, J. Zhang, C. Li, X. Xu, Y. Jin, ACS Appl. Mater. Interfaces 9, 35712 (2017)

    Article  CAS  PubMed  Google Scholar 

  32. P. Tongying, V.V. Plashnitsa, N. Petchsang, F. Vietmeyer, G.J. Ferraudi, G. Krylova, M. Kuno, J. Phys. Chem. Lett. 3, 3234 (2012)

    Article  CAS  PubMed  Google Scholar 

  33. P. Tongying, F. Vietmeyer, D. Aleksiuk, G.J. Ferraudi, G. Krylova, M. Kuno, Nanoscale 6, 4117 (2014)

    Article  CAS  PubMed  Google Scholar 

  34. X. Wen, A. Sitt, P. Yu, Y.-R. Toh, J. Tang, Phys. Chem. Chem. Phys. 14, 3505 (2012)

    Article  CAS  PubMed  Google Scholar 

  35. V.L. Bridewell, R. Alam, C.J. Karwacki, P.V. Kamat, Chem. Mater. 27, 5064 (2015)

    Article  CAS  Google Scholar 

  36. H. Zhu, N. Song, H. Lv, C.L. Hill, T. Lian, J. Am. Chem. Soc. 134, 11701 (2012)

    Article  CAS  PubMed  Google Scholar 

  37. J. Zhao, M.A. Holmes, F.E. Osterloh, ACS Nano 7, 4316 (2013)

    Article  CAS  PubMed  Google Scholar 

  38. W. Li, F. Jäckel, Nanoscale 10, 16153 (2018)

    Article  CAS  PubMed  Google Scholar 

  39. T. Simon, N. Bouchonville, M.J. Berr, A. Vaneski, A. Adrović, D. Volbers, R. Wyrwich, M. Döblinger, A.S. Susha, A.L. Rogach, F. Jäckel, J.K. Stolarczyk, J. Feldmann, Nat. Mater. 13, 1013 (2014)

    Article  CAS  PubMed  Google Scholar 

  40. T. Simon, M.T. Carlson, J.K. Stolarczyk, J. Feldmann, ACS Energy Lett. 1, 1137 (2016)

    Article  CAS  Google Scholar 

  41. J.U. Bang, S.J. Lee, J.S. Jang, W. Choi, H. Song, J. Phys. Chem. Lett. 3, 3781 (2012)

    Article  CAS  PubMed  Google Scholar 

  42. Y. Nakibli, P. Kalisman, L. Amirav, J. Phys. Chem. Lett. 6, 2265 (2015)

    Article  CAS  PubMed  Google Scholar 

  43. M.J. Berr, F.F. Schweinberger, M. Döblinger, K.E. Sanwald, C. Wolff, J. Breimeier, A.S. Crampton, C.J. Ridge, M. Tschurl, U. Heiz, F. Jäckel, J. Feldmann, Nano Lett. 12, 5903 (2012)

    Article  CAS  PubMed  Google Scholar 

  44. Y. Nakibli, Y. Mazal, Y. Dubi, M. Wächtler, L. Amirav, Nano Lett. 18, 357 (2018)

    Article  CAS  PubMed  Google Scholar 

  45. Q. Li, F. Zhao, C. Qu, Q. Shang, Z. Xu, L. Yu, J.R. McBride, T. Lian, J. Am. Chem. Soc. 140, 11726 (2018)

    Article  CAS  PubMed  Google Scholar 

  46. K. Wu, Q. Li, Y. Du, Z. Chen, T. Lian, Chem. Sci. 6, 1049 (2015)

    Article  CAS  PubMed  Google Scholar 

  47. L. Amirav, A.P. Alivisatos, J. Phys. Chem. Lett. 1, 1051 (2010)

    Article  CAS  Google Scholar 

  48. S. Naskar, F. Lübkemann, S. Hamid, A. Freytag, A. Wolf, J. Koch, I. Ivanova, H. Pfnür, D. Dorfs, D.W. Bahnemann, N.C. Bigall, Adv. Funct. Mater. 27, 1604685 (2017)

    Article  CAS  Google Scholar 

  49. P. Kalisman, Y. Kauffmann, L. Amirav, J. Mater. Chem. A 3, 3261 (2015)

    Article  CAS  Google Scholar 

  50. K.P. Acharya, R.S. Khnayzer, T. O’Connor, G. Diederich, M. Kirsanova, A. Klinkova, D. Roth, E. Kinder, M. Imboden, M. Zamkov, Nano Lett. 11, 2919 (2011)

    Article  CAS  PubMed  Google Scholar 

  51. E. Khon, K. Lambright, R.S. Khnayzer, P. Moroz, D. Perera, E. Butaeva, S. Lambright, F.N. Castellano, M. Zamkov, Nano Lett. 13, 2016 (2013)

    Article  CAS  PubMed  Google Scholar 

  52. M.J. Berr, P. Wagner, S. Fischbach, A. Vaneski, J. Schneider, A.S. Susha, A.L. Rogach, F. Jäckel, J. Feldmann, Appl. Phys. Lett. 100, 223903 (2012)

    Article  CAS  Google Scholar 

  53. P. Kalisman, Y. Nakibli, L. Amirav, Nano Lett. 16, 1776 (2016)

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Zhukovskyi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhukovskyi, M., Yashan, H. & Kuno, M. Low-dimensional II–VI semiconductors for photocatalytic hydrogen generation. Res Chem Intermed 45, 4249–4260 (2019). https://doi.org/10.1007/s11164-019-03904-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-019-03904-2

Keywords

Navigation