Skip to main content

Advertisement

Log in

Synthesis of TiO2/ZrO2/SiO2 powders and their structural, optical and photocatalytic properties

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Ternary oxide powders based on titania, zirconia and silica have been synthesized by the sol–gel method. The characterization of the powders was performed using UV–Vis spectroscopy, EPR, X-ray diffraction and Raman spectroscopy. The XRD study indicated the formation of TiO2 nanocrystals in anatase phase and titanium zirconate as srilankite phase. The band gap energy values of ternary powders are in the range of 3.2–3.3 eV. It is found that different types of paramagnetic centers were formed depending on silica sources after high-energy irradiation. As shown by the electron paramagnetic resonance study, the stability of SiO2 against β-irradiation is observed only for TiO2/ZrO2/SiO2 powder obtained from tetraethoxysilane as well as the formation of oxygen vacancies in TiO2 structure. Photocatalytic activity of TiO2/ZrO2/SiO2 powders is investigated in the process of photoreduction of Cr(VI) ions to Cr(III). As shown, the efficiency of photocatalyst depended on the nature of defect sites of the nanocomposites’ surface. It is found that the TiO2/ZrO2/SiO2 system obtained using tetraethoxysilane exhibited the highest photocatalytic activity as a result of the certain defect sites formation after high-energy irradiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. C.J. Brinker, A.J. Hurd, J. Phys. III France 4, 1231 (1994)

    Article  Google Scholar 

  2. O.P. Dmytrenko, N.P. Kulish, T.O. Busko, V.S. Stashchuk, A.M. Eremenko, N.P. Smirnova, N.V. Vityuk, Funct. Mater. 14, 82 (2007)

    CAS  Google Scholar 

  3. P.N. Gunawidjaja, M.A. Holland, G. Mountjoy, D.M. Pickup, R.J. Newport, M.E. Smith, Solid State Nucl. Magn. Reson. 23, 88 (2003)

    Article  CAS  PubMed  Google Scholar 

  4. O. Linnik, N. Chorna, N. Smirnova, Nanoscale Res. Lett. 12, 249 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. N. Chorna, N. Smirnova, V. Vorobets, G. Kolbasov, O. Linnik, Appl. Surf. Sci. 473, 343 (2019)

    Article  CAS  Google Scholar 

  6. T. Busko, O. Dmytrenko, M. Kulish, Y. Prylutskyy, S. Shokhovets, G. Gobsch, N. Vityuk, A. Eremenko, V. Tkach, Mater. Sci. Eng. Technol. 44, 119 (2013)

    CAS  Google Scholar 

  7. M. Andrulevičius, S. Tamulevičius, Yu. Gnatyuk, N. Vityuk, N. Smirnova, A. Eremenko, Mater. Sci. (Medžiagotyra) 14(1), 8 (2008)

    Google Scholar 

  8. N. Vityuk, Y. Dyvinsky, N. Smirnov, G. Eremenko, O. Oranskaya, Chem. Phys. Surf. Technol. 9, 76 (2003)

    CAS  Google Scholar 

  9. A. Eremenko, N. Smirnova, O. Rusina, O. Linnik, L. Spanhe, K. Rechthaler, Mol. Struct. 1, 553 (2000)

    Google Scholar 

  10. B. Basnet, N. Sarkar, J.G. Park, S. Mazumder, I.J. Kim, Adv. Ceram. 6, 129 (2017)

    Article  CAS  Google Scholar 

  11. S. Tsunekawa, K. Asami, S. Ito, M. Yashima, T. Sugimoto, Appl. Surf. Sci. 252, 1651 (2005)

    Article  CAS  Google Scholar 

  12. Zh.M. Li, Zh. Feng, J. Chen, C. Li, Phys. Chem. B 110, 927 (2006)

    Article  CAS  Google Scholar 

  13. S. Angello, N. Chiodini, A. Paleari, A. Parlato, Non-Cryst. Sol. 353, 573 (2007)

    Article  CAS  Google Scholar 

  14. M. Jivanescu, A. Stesmans, M. Zacharias, Appl. Phys. 24, 103518 (2008)

    Article  CAS  Google Scholar 

  15. G. Buscarino, S. Agnello, Non-Cryst. Solids 353, 577 (2007)

    Article  CAS  Google Scholar 

  16. P.V. Sushko, S. Mukhopadhyay, A.M. Stoneham, A.L. Shluger, Microelectron. Eng. 80, 292 (2005)

    Article  CAS  Google Scholar 

  17. J. Soria, J. Sanz, I. Sobrados, J.M. Coronado, F. Fresno, M.D. Hernandez-Alonso, Catal. Today 129, 240 (2007)

    Article  CAS  Google Scholar 

  18. R. Scotti, M. D’Arienzo, A. Testino, F. Morazzoni, Appl. Catal. B Environ. 82, 58 (2008)

    Article  CAS  Google Scholar 

  19. J.-M. Coronado, A.J. Maira, A. Martinez-Arias, J.C. Conesa, J. Soria, Photochem. Photobiol. A 150, 213 (2002)

    Article  CAS  Google Scholar 

  20. Ch.P. Kumar, N.O. Gopal, T.Ch. Wang, M.-Sh. Wong, Sh. ChuKe, Phys. Chem. B 110, 5223 (2006)

    Article  CAS  Google Scholar 

  21. S.-Ch. Moon, K. Tsuji, T. Nomura, M. Anpo, Chem. Lett. 23, 2241 (1994)

    Article  Google Scholar 

  22. S.-Ch. Moon, T. Hieida, H. Yamashita, M. Anpo, Chem. Lett. 24, 447 (1995)

    Article  Google Scholar 

  23. S.-Ch. Moon, M. Fujino, H. Yamashita, M. Anpo, Phys. Chem. B 101, 369 (1997)

    Article  CAS  Google Scholar 

  24. R. Ben-Michael, D.S. Tannhauser, J. Genossar, Phys. Rev. B 43, 7395 (1991)

    Article  CAS  Google Scholar 

  25. A. Adamski, T. Spałek, Z. Sojka, Res. Chem. Intermed. 29, 793 (2003)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Vityuk.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vityuk, N., Busko, T. & Eremenko, A. Synthesis of TiO2/ZrO2/SiO2 powders and their structural, optical and photocatalytic properties. Res Chem Intermed 45, 4225–4235 (2019). https://doi.org/10.1007/s11164-019-03902-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-019-03902-4

Keywords

Navigation