Skip to main content

Advertisement

Log in

Sensitization of TiO2 by a symmetric anionic polymethine dye with three conjugated chromophores

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Based on the analysis of spectral, electrochemical and energy parameters of the anionic polymethine dye 9-ezenil-2,4,5,7-tetranitro-[1-(2,4,5,7-tetranitro-9N-fluoren-9-ezenil) methyliden] triethylammonium 9-N-fluoren, a principal possibility for its utilization as an effective sensitizer of titanium dioxide has been shown. It was found that the bathochromic shift of the long-wave absorption band occurs at deposition of the dye on the surface of TiO2. The degree of this shift depends on the dye content in the heterostructure. In addition, the deposition also causes some redistribution in the intensity of the absorption bands: they become wider and expand over almost the entire visible and near IR spectral zones. This effect can be used to increase an efficiency of the heterostructures because of increased light absorption. The oxidation and reduction potentials of the polymethine dyes were determined by cyclic voltammetry and then their excited redox potentials were calculated using those values. It was shown that the dyes can perform sensitizing of TiO2 by transfering electrons into the conductivity band of titania. Photocatalytic activity of the heterostructure was determined using the model reaction of methylene blue reduction under different irradiation intensities and at various concentrations of the dye. The processes of energy transformation between TiO2 and the dye-sensitizer induced by the light absorption have been discussed. It was proven that the electronic processes required for both direct and photocatalytically-sensitized reduction of methylene blue are allowed thermodynamically in the systems containing the heterostructure described in this work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of data and materials

The present research results have not been published before. Data and Materials are all in the main text, figures, and tables.

References

  1. L. Etgar, P. Gao, Zh Xue, Q. Peng, A.K. Chandiran, B. Liu, MdK Nazeeruddin, M. Grätzel, J. Am. Chem. Soc. 134(42), 17396 (2012)

    Article  CAS  PubMed  Google Scholar 

  2. S.A. Lopes, B. Sanchez-Lengeling, J.G. Soares, A. Aspuru-Guzik, Joule 1, 857 (2017)

    Article  CAS  Google Scholar 

  3. R. Bisht, M. Fairoos, A.K. Singh, J. Nithyanandhan, J. Org. Chem. 82(4), 1920 (2017)

    Article  CAS  PubMed  Google Scholar 

  4. I. Kobasa, I. Kondratyeva, L. Odosiy, Canad. J. Chem. 88(7), 659 (2010)

    Article  CAS  Google Scholar 

  5. N.A. Treat, F.J. Knorr, J.L. McHale, J. Phys. Chem. C 120(17), 9122 (2016)

    Article  CAS  Google Scholar 

  6. J.M. Cole, M.A. Blood-Forsythe, T-Ch. Lin, P. Pattison, Yu. Gong, Á. Vázquez-Mayagoitia, P.G. Waddell, L. Zhang, N. Koumura, S. Mori, A.C.S. Appl, Mater. Interfaces 9(31), 25952 (2017)

    Article  CAS  Google Scholar 

  7. I. Kobasa, L. Odosiy, I. Kurdyukova, O. Ishchenko, S. Kurek, Funct. Mater. Lett. 8, 1550067 (2015)

    Article  CAS  Google Scholar 

  8. G. Miguel, M. Marchena, M. Ziolek, S.S. Pandey, S. Hayase, A. Douhal, J. Phys. Chem. C 116, 12137 (2012)

    Article  CAS  Google Scholar 

  9. G. Chen, H. Sasabe, Y. Sasaki, H. Katagiri, X. Wang, T. Sano, Z. Hong, Y. Yang, J. Kido, Chem. Mater. 26, 1356 (2014)

    Article  CAS  Google Scholar 

  10. V. Pokhodenko, N. Guba, A. Krjukov, S. Kuchmiy, H. Korzhak, Funct. Mater. 5(3), 387 (1998)

    Google Scholar 

  11. Ch. Ren, W. Qiu, H. Zhang, Z. He, Y. Chen, Mol. Catal. A Chem. 398, 215 (2015)

    Article  CAS  Google Scholar 

  12. H.S. Jie, H. Lee, K.H. Chae, M.Y. Huh, M. Matsuoka, S.H. Cho, J.K. Park, Res. Chem. Intermed. 38(6), 1171 (2012)

    Article  CAS  Google Scholar 

  13. N.B. Husiak, I.M. Kobasa, S.S. Kurek, Funct. Mater. Lett. 7(3), 1450030 (2014)

    Article  CAS  Google Scholar 

  14. F.T.F. O’Mahony, Y.H. Lee, C. Jellett, S. Dmitrov, D.T.J. Bryant, J.R. Durrant, B.C. O’Regan, M. Graetzel, M.K. Nazeeruddin, S.A. Haque, Mater. Chem. A 3(14), 7219 (2015)

    Article  Google Scholar 

  15. H.S. Kim, N.-G. Park, Phys. Chem. Lett. 5, 2927 (2014)

    Article  CAS  Google Scholar 

  16. S.I. Seok, M. Grätzel, N.G. Park, Nano. Micro. Small. 14(20), 1704177 (2018)

    Google Scholar 

  17. I. Kobasa, I. Kondratyeva, N. Husyak, Funct. Mater. Lett. 3(4), 233 (2010)

    Article  CAS  Google Scholar 

  18. I. Kobasa, I. Kondratyeva, Pol. J. Chem. 82(8), 1639 (2008)

    CAS  Google Scholar 

  19. Ya.S. Mazurkevich, I.M. Kobasa, Inorg. Mat. 38(5), 522 (2002)

    Article  CAS  Google Scholar 

  20. I.M. Kobasa, I.V. Kondratyeva, YuI Gnatyuk, Theoret. Exper. Chem. 44(1), 42 (2008)

    Article  CAS  Google Scholar 

  21. I.M. Kobasa, I.V. Kondratyeva, YuV Kropelnytska, Funct. Mater. Lett. 11(1), 1850017 (2018)

    Article  CAS  Google Scholar 

  22. I.V. Kondratyeva, L. Orzel, I.M. Kobasa, A.O. Doroshenko, W. Macyk, Mater. Sci. Semicond. Proc. 42(1), 62 (2016)

    Article  CAS  Google Scholar 

  23. I.V. Kurdyukova, N.A. Derevyanko, A.A. Ishchenko, D.D. Mysyk, Rus. Chem. Bull. 61(2), 287 (2012)

    Article  CAS  Google Scholar 

  24. N.A. Davidenko, A.A. Ishchenko, N.G. Kuvshinskii, Photonics of the Molecular Semiconducting Composites Based on Organic Compounds (Naukova Dumka, Kiev, 2005), p. 249

    Google Scholar 

  25. A.I. Kiprianov, Color and Structure of Cyanine Dyes (Naukova Dumka, Kiev, 1979), p. 217

    Google Scholar 

  26. A.I. Krykov, A.L. Stroyuk, S.Ya. Kuchmiy, V.D. Pohodenko, Nanophotocatalysis (Academperiodika, Kiev, 2013), p. 179

    Google Scholar 

  27. M. Gratzel (ed.), Energy Resources Through Photochemistry and Catalysis (Academic Press, New York, 1983), p. 141

    Google Scholar 

  28. P.V. Kamat, Chem. Rev. 93(1), 276 (1993)

    Article  Google Scholar 

  29. M. Salkauskas, Chemical Metallization of Plastics (Nauka, Leningrad, 1967), p. 27

    Google Scholar 

  30. F.E. Osterloh, Chem. Mater. 20(1), 35 (2008)

    Article  CAS  Google Scholar 

  31. A.N. Terenin, Photonics of the Dye Molecules (Nauka, Leningrad, 1967), p. 314

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Prof. A. Ischenko from Institute of Organic Chemistry of National Academy of Science of Ukraine for the dye samples used in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. M. Kobasa.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kobasa, I.M., Kondratyeva, I.V., Odosiy, L.I. et al. Sensitization of TiO2 by a symmetric anionic polymethine dye with three conjugated chromophores. Res Chem Intermed 45, 4043–4052 (2019). https://doi.org/10.1007/s11164-019-03889-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-019-03889-y

Keywords

Navigation