Skip to main content
Log in

Photoinduced intermolecular charge transfer processes on pure and modified silica surfaces

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

This article briefly reviews some of our work over the past two decades devoted to the photoinduced electron-transfer processes and formation of bimolecular complexes–exiplexes between adsorbed donor pyrene and anthracene and acceptor N,N-dimethylaniline molecules on silica and silica–titania surfaces. Quenching of the fluorescence of acenes by N,N-dimethylaniline on silica surfaces is found to be diffusion controlled and results from exciplex formation at room temperature. The effect of silica–titania on the processes of photoinduced electron-transfer resulted vise-versa in increases of the fluorescence intensity from the adsorbed acenes. This phenomenon is explained by the selective adsorption of N,N-dimethylaniline on the acid “titanium” centers and a shift of the acenes to weaker adsorption sites located on the silica support. The excited molecular pair effectively yields reduced titanium ions due to an electron transfer process. This study demonstrates the important role that adsorption of organic molecules plays in photocatalytic processes on the surface of semiconductor composites. Sol–gel produced porous silica modified with benzophenone molecules leads to full photoreduction of silver and gold ions. Formation of stable Ag and Au nanoparticles embedded in porous silica films was carried out by irradiation of silver (gold) ions-modified silica in benzophenone–water–isopropanol solution. The triplet state of benzophenone takes part in the formation of the reducing agents, such as ketyl radicals and anion radicals of benzophenone and isopropanol. These systems can be used as bactericide materials, for extraction of metal ions from solution, for photocatalytic reduction of toxic transition metals and other applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Copyright 1997 American Chemical Society

Scheme 1
Fig. 2
Fig. 3

Copyright 2004 Hindawi Publishing Corporation

Fig. 4

Copyright 2006 Elsevier

Fig. 5
Fig. 6

Copyright 2004 Royal Society of Chemistry

Similar content being viewed by others

References

  1. J.K. Thomas, J. Phys. Chem. 91, 267 (1987)

    Article  CAS  Google Scholar 

  2. J.K. Thomas, Chem. Rev. (Washington, D.C.) 93, 301 (1993)

    Article  CAS  Google Scholar 

  3. R. Krasnansky, R. Koike, J.K. Thomas, J. Phys. Chem. 94, 4521 (1990)

    Article  CAS  Google Scholar 

  4. R.K. Bauer, R. Borenstein, P. de Mayo, K. Okada, M. Rafalska, W.R. Ware, K.C. Wu, J. Am. Chem. Soc. 104, 4635 (1982)

    Article  CAS  Google Scholar 

  5. N.J. Turro, M.B. Zimmt, I.R. Gould, J. Am. Chem. Soc. 107, 5826 (1985)

    Article  CAS  Google Scholar 

  6. M.A.T. Marro, J.K. Thomas, J. Photochem. Photobiol. A Chem. 72, 251 (1993)

    Article  CAS  Google Scholar 

  7. J.K. Thomas, E.H. Ellison, Adv. Colloid Interface Sci. 89–90, 195 (2001)

    Article  PubMed  Google Scholar 

  8. D. Oelkrug, S. Uhl, F. Wilkinson, C.J. Willsher, J. Phys. Chem. 93, 4551 (1989)

    Article  CAS  Google Scholar 

  9. G.J. Kavarnos, N.J. Turro, Chem. Rev. 86, 401 (1986)

    Article  CAS  Google Scholar 

  10. M. Anpo, H. Nakaya, S. Kodama, Y. Kubokawa, K. Domen, T. Onishi, J. Phys. Chem. 90, 1633 (1986)

    Article  CAS  Google Scholar 

  11. H. Yamashita, S. Kawasaki, Y. Ichihashi, M. Ilarada, M. Takeuchi, M. Anpo, G. Stewart, M.A. Fox, C. Louis, M. Che, J. Phys. Chem. B 102, 5870 (1998)

    Article  CAS  Google Scholar 

  12. G. Zhang, J. Kerry Thomas, A. Eremenko, T. Kikteva, F. Wilkinson, J. Phys. Chem. B 101, 8569 (1997)

    Article  CAS  Google Scholar 

  13. A. Eremenko, N. Smirnova, O. Yakimenko, G. Starukh, D.R. Worrall, S.L. Williams, Int. J. Photoenergy 6(1), 11 (2004)

    Article  CAS  Google Scholar 

  14. A. Eremenko, V. Kondilenko, O. Lyuksutova, N. Smirnova et al., Proc. Indian Acad. Sci. Chem. Sci. 107, 779 (1996)

    Google Scholar 

  15. D.R. Worrall, S. Williams, A. Eremenko, N. Smirnova, O. Yakimenko, G. Staruch, Coll. Surf. A Physicochem. Eng. Asp. 230, 45 (2004)

    Article  CAS  Google Scholar 

  16. O. Yakimova, A. Eremenko, A. Chuiko, J. Mol. Struct. 218, 447 (1990)

    Article  CAS  Google Scholar 

  17. V. Kondilenko, T. Kikteva, I. Tarasov, A. Eremenko, Theor. Exp. Chem. 33, 188 (1997). (Russ., Trans. English)

    Article  Google Scholar 

  18. N. Smirnova, A. Eremenko, O. Rusina, O. Linnik, L. Spanhel, K. Rechthaler, Chem. Phys. Technol. Surf. 46, 160 (2001)

    Google Scholar 

  19. A. Eremenko, A. Chuiko, Res. Chem. Intermed. 19, 175 (1993)

    Google Scholar 

  20. H. Weiss, A. Fernandez, H. Kisch, Angew. Chem. Int. Ed. 40, 3825 (2001)

    Article  CAS  Google Scholar 

  21. C. Anderson, A.J. Bard, J. Phys. Chem. 99, 9882 (1995)

    Article  CAS  Google Scholar 

  22. K. Kosuge, P.S. Singh, J. Phys. Chem. B 103, 3563 (1999)

    Article  CAS  Google Scholar 

  23. A. Fernandez, A. Caballero, A.R. Gonzales-Elipe, Surf. Interface Anal. 18, 39 (1992)

    Article  Google Scholar 

  24. N.P. Smirnova, N.I. Surovtseva, T.V. Fesenko, YuI Gnatyuk, A.M. Eremenko, V.A. Pokrovskiy, J. Adv. Oxid. Technol. 11, 551 (2008)

    Google Scholar 

  25. N.I. Surovtseva, N.P. Smirnova, A.M. Eremenko, T.V. Fesenko, V.A. Pokrovskiy, J. Appl. Spectrosc. 77, 219 (2007)

    Google Scholar 

  26. N.I. Surovtseva, A.M. Eremenko, N.P. Smirnova, T.V. Fesenko, V.A. Pokrovskiy, G. Starukh, Theor. Exp. Chem. 43, 225 (2007)

    Article  Google Scholar 

  27. Y.K. Kim, E.Y. Kim, M. Whang, Y.H. Kim, W.I. Lee, J. Sol Gel Sci. Technol. 33, 87 (2005)

    Article  CAS  Google Scholar 

  28. D. Worrall, S. Williams, A. Eremenko, N. Smirnova, O. Yakimenko, G. Starukh, J.S. Lee, W.B. Kim, in Book of abstracts of SOLAR’03, Enpho’03, 2003, Egypt

  29. A. Eremenko, N. Smirnova, G. Starukh, K. Rotkiewizc, A. Danel, J. Photochem. Photobiol. A Chem. 177, 83 (2006)

    Article  CAS  Google Scholar 

  30. G. Krylova, A. Eremenko, N. Smirnova, A. Korchev, Chem. Phys. Technol. Surf. 10, 60 (2004)

    Google Scholar 

  31. S. Eustis, G. Krylova, A. Eremenko, N. Smirnova, A.W. Schill, M.A. El-Sayed, Photochem. Photobiol. Sci. 11, 115 (2004)

    Google Scholar 

  32. G.V. Krylova, A.M. Eremenko, N.P. Smirnova, S. Eustis, Theor. Exp. Chem. 41, 105 (2005). (translated in English)

    Article  CAS  Google Scholar 

  33. G. Krylova, A. Eremenko, N. Smirnova, S. Eustis, Int. J. Photoenergy 7, 193 (2005)

    Article  CAS  Google Scholar 

  34. G. Krylova, A. Eremenko, N. Smirnova, S. Eustis, Theor. Exp. Chem. 41, 348 (2005). (transl. Engl.)

    Google Scholar 

  35. S. Eustis, G. Krylova, N. Smirnova, A. Eremenko, Ch. Tabor, W. Huang, M.A. El-Sayed, J. Photochem. Photobiol. A Chem. 181, 385 (2006)

    Article  CAS  Google Scholar 

  36. H. Yashan, A. Eremenko, N. Smirnova, G. Krylova, W. Huang, Tabor C, in Sol–Gel Methods for Materials Processing. Focusing on Materials for Pollution Control, Water Purification, and Soil Remediation, NATO Science for Peace and Security Series-C: Environmental Security, ed. by P. Innocenzi, Yu. Zub, V. Kessler (Springer, Berlin, 2008), p. 473

    Chapter  Google Scholar 

  37. A. Eremenko, N. Smirnova, H. Yashan, E. Ozkaraoglu, G. Ertas, S. Suzer, Chem. Phys. Technol. Surf. 1, 94 (2010)

    CAS  Google Scholar 

  38. G. Krylova, A. Eremenko, N. Smirnova, Book: Nanomaterials in Chemistry and Biology (Kyiv, KM Academy, 2004), p. 68

    Google Scholar 

  39. A.M. Eremenko, N.P. Smirnova, I.P. Mukha, H.R. Yashan, Theor. Exp. Chem. 46, 65 (2010). (trans. Engl.)

    Article  CAS  Google Scholar 

  40. I. Shmarakov, M. Marchenko, Yu. Mukha, H. Yashan, N. Smirnova, A. Eremenko, Biol. Syst. 2, 13 (2010)

    Google Scholar 

  41. Yu. Mukha, A.M. Eremenko, N.P. Smirnova, G.I. Korchak, A. Mikhienkova, Chem. Phys. Technol. Surf. 15, 255 (2009)

    Google Scholar 

  42. IuP Mukha, A.M. Eremenko, N.P. Smirnova, A.I. Mikhienkova, G.I. Korchak, V.F. Gorchev, AYu. Chunikhin, Appl. Biochem. Microbiol. 49, 199 (2013)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was carried out in the Laboratory of Surface Photonics team of Chuiko Institute of Surface Chemistry, and as collaborations in the frame of common scientific projects (at different times) with Prof. J.K. Thomas’s group (Notre Dame University, IL, USA), Prof. F. Wilkinson’s and Prof. D. Worrall’s groups (Loughborough University, UK), Prof. M.A. El-Sayed’s group (LDL, Georgia Tech, Atlanta, GA, USA). I express my deep gratitude to all my colleagues involved in carrying out this work, for fruitful discussion of the results and for their inspiring and friendly support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Eremenko.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eremenko, A. Photoinduced intermolecular charge transfer processes on pure and modified silica surfaces. Res Chem Intermed 45, 4003–4013 (2019). https://doi.org/10.1007/s11164-019-03886-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-019-03886-1

Keywords

Navigation