Skip to main content
Log in

Novel silicon super bases at DFT level of theory: effects of fused benzene rings on the basicity of 2,4,6-cycloheptatrienesilylene

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Super bases are extremely important compounds with high proton affinities (PAs) and many applications in organic, inorganic, polymer, and photochemistry. Here, we have compared and contrasted the basicity of 2,4,6-cycloheptatrienesilylene (1), with its benzo-substituted derivatives including: 4,5-benzo-2,4,6-cycloheptatrienesilylene (2), 3,4-benzo-2,4,6-cycloheptatrienesilylene (3), 2,3-benzo-2,4,6-cycloheptatrienesilylene (4), dibenzo[a,c]-2,4,6-cycloheptatrienesilylene (5), dibenzo[a,d]-2,4,6-cycloheptatrienesilylene (6), dibenzo[a,e]-2,4,6-cycloheptatrienesilylene (7), dibenzo[a,b]-2,4,6-cycloheptatrienesilylene (8), and tribenzo[a,c,e]-2,4,6-cycloheptatrienesilylene (9), at B3LYP/6-311++G** level. All scrutinized silylenes (19) and their corresponding protonated forms (1H9H) appear as minima on their energy surfaces. The conductor-like polarizable continuum model is applied to predict the pka values for nucleophilic silylenes (19) in dimethyl sulfoxide, using thermodynamic cycles of Gibbs free energies. In most cases, the scrutinized 19 show relatively high basicity, which qualify them for being categorized as super bases or proton sponges. The overall trend of basicity (7 > 6 > 3 > 1 > 2 > 4 > 5 > 8 > 9) appears consistent with both proton affinity in solution phase (PA2) and nucleophilicity (N). Among our scrutinized silylenes, 7 shows the highest basicity, Mulliken electronegativity (\({\mathcal{X}}\)), pka, N, PA, the lowest singlet–triplet energy gap (ΔEs–t), absolute chemical hardness (ηabs), band gap (ΔEH–L), divalent angle (C–Si–C, \({\hat{\text{A}}}\)), and Si–C bond length (\({\dot{\text{A}}}\)). The least basic silylene turns out to be 9, which is the most non-planar structure. It shows the lowest dipole moment (D), nucleus independent chemical shift value (NICS (1)), N, PA, the widest dihedral angle (C–Si–C–C, \({\hat{\text{D}}}\)), and the highest ΔEH–L. Our investigation introduces novel silylenic super bases with possible applications in organic chemistry.

Graphical abstract

Following up on our previous report (Kassaee et al. [41]), we investigate the basicity of novel one-, two-, three-, and four-cyclic conjugated silylenes (19). Most of these silylenes turn out as a super base for showing high pKa and proton affinity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Scheme 3
Fig. 2

Similar content being viewed by others

References

  1. M.A. Montes-Morán, D. Suárez, J.A. Menéndez, E. Fuente, Carbon N. Y. 42, 1219 (2004)

    Article  CAS  Google Scholar 

  2. M. Alcami, O. Mo, M. Yanez, J. Phys. Org. Chem. 15, 174 (2002)

    Article  CAS  Google Scholar 

  3. A.L. Llamas-Saiz, C. Foces-Foces, J. Elguero, J. Mol. Struct. 328, 297 (1994)

    Article  CAS  Google Scholar 

  4. E.D. Raczyńska, M. Decouzon, J. Gal, P. Maria, G. Gelbard, F. Vielfaure-Joly, J. Phys. Org. Chem. 14, 25 (2001)

    Article  Google Scholar 

  5. Y. Nonoguchi, S. Sudo, A. Tani, T. Murayama, Y. Nishiyama, R.M. Uda, T. Kawai, Chem. Commun. 53, 10259 (2017)

    Article  CAS  Google Scholar 

  6. Y.-J. Kim, A. Streitwieser, J. Am. Chem. Soc. 124, 5757 (2002)

    Article  CAS  PubMed  Google Scholar 

  7. J.A. Platts, Phys. Chem. Chem. Phys. 2, 3115 (2000)

    Article  CAS  Google Scholar 

  8. A. Beste, O. Krämer, A. Gerhard, G. Frenking, Eur. J. Inorg. Chem. 1999, 2037 (1999)

    Article  Google Scholar 

  9. D. Martin, O. Illa, A. Baceiredo, G. Bertrand, R.M. Ortuno, V. Branchadell, J. Org. Chem. 70, 5671 (2005)

    Article  CAS  PubMed  Google Scholar 

  10. A. K. Biswas, M. K. Si and B. Ganguly, New J. Chem. 42, 11153 (2018)

    Article  CAS  Google Scholar 

  11. P.V. Bharatam, R. Moudgil, D. Kaur, Organometallics 21, 3683 (2002)

    Article  CAS  Google Scholar 

  12. M. Driess, S. Yao, M. Brym, C. van Wüllen, D. Lentz, J. Am. Chem. Soc. 128, 9628 (2006)

    Article  CAS  PubMed  Google Scholar 

  13. A.K. Biswas, B. Ganguly, Chem. Eur. J. 23, 2700 (2017)

    Article  CAS  PubMed  Google Scholar 

  14. A. Sojoudi, F.A. Shakib, M.R. Momeni, M. Imani, S. Shojaee, Comput. Theor. Chem. 1009, 81 (2013)

    Article  CAS  Google Scholar 

  15. S.S. Kostina, T. Singh, W.J. Leigh, Organometallics 31, 3755 (2012)

    Article  CAS  Google Scholar 

  16. M. Haeberlein, J.S. Murray, T. Brinck, P. Politzer, Can. J. Chem. 70, 2209 (1992)

    Article  CAS  Google Scholar 

  17. A. Comandini, K. Brezinsky, J. Phys. Chem. A 115, 5547 (2011)

    Article  CAS  PubMed  Google Scholar 

  18. S. Ketrat, S. Müller, M. Dolg, J. Phys. Chem. A 111, 6094 (2007)

    Article  CAS  PubMed  Google Scholar 

  19. D. Wang, A. Violi, D.H. Kim, J.A. Mullholland, J. Phys. Chem. A 110, 4719 (2006)

    Article  CAS  PubMed  Google Scholar 

  20. R.W. Alder, S.P. East, J.N. Harvey, M.T. Oakley, J. Am. Chem. Soc. 125, 5375 (2003)

    Article  CAS  PubMed  Google Scholar 

  21. C.E.H. Dessent, Chem. Phys. Lett. 330, 180 (2000)

    Article  CAS  Google Scholar 

  22. R.-E. Li, J.-H. Sheu, M.-D. Su, Inorg. Chem. 46, 9245 (2007)

    Article  CAS  PubMed  Google Scholar 

  23. T. Kosai, S. Ishida, T. Iwamoto, Angew. Chem. Int. Ed. 55, 15554 (2016)

    Article  CAS  Google Scholar 

  24. N. Peran, Z.B. Maksić, Chem. Commun. 47, 1327 (2011)

    Article  CAS  Google Scholar 

  25. I. Despotović, Z.B. Maksić, R. Vianello, Eur. J. Org. Chem. 2007, 3402 (2007)

    Article  CAS  Google Scholar 

  26. M. Meot-Ner, J. Phys. Chem. 84, 2716 (1980)

    Article  CAS  Google Scholar 

  27. V.J. Vandiver, C.S. Leasure, G.A. Eiceman, Int. J. Mass Spectrom. Ion Process. 66, 223 (1985)

    Article  CAS  Google Scholar 

  28. E. Ohta, T. Ogaki, T. Aoki, Y. Oda, Y. Matsui, H. Ikeda, in AIP Conference Proceedings, vol. 1702 (AIP Publishing, 2015), p. 90060

  29. A. Streitwieser Jr., J.H. Hammons, Prog. Phys. Org. Chem. 3, 41 (1965)

    CAS  Google Scholar 

  30. R.G. Pearson, J. Songstad, J. Am. Chem. Soc. 89, 1827 (1967)

    Article  CAS  Google Scholar 

  31. A. Bagno, G. Scorrano, R.A.M. O’Ferrall, Rev. Chem. Intermed. 7, 313 (1987)

    Article  CAS  Google Scholar 

  32. T.-L. Ho, Chem. Rev. 75, 1 (1975)

    Article  CAS  Google Scholar 

  33. H.L. Woodcock, D. Moran, B.R. Brooks, P.R. Schleyer, H.F. Schaefer, J. Am. Chem. Soc. 129, 3763 (2007)

    Article  CAS  PubMed  Google Scholar 

  34. J.K. Kendall, H. Shechter, J. Org. Chem. 66, 6643 (2001)

    Article  CAS  PubMed  Google Scholar 

  35. C. Trindle, J. Org. Chem. 68, 9669 (2003)

    Article  CAS  PubMed  Google Scholar 

  36. E. Iiba, K. Hirai, H. Tomioka, Y. Yoshioka, J. Am. Chem. Soc. 124, 14308 (2002)

    Article  CAS  PubMed  Google Scholar 

  37. L. Pause, M. Robert, J. Heinicke, O. Kühl, J. Chem. Soc. Perkin Trans. 2, 1383 (2001)

    Article  CAS  Google Scholar 

  38. A. Kuhn, M. Vosswinkel, C. Wentrup, J. Org. Chem. 67, 9023 (2002)

    Article  CAS  PubMed  Google Scholar 

  39. L.T. Scott, M.M. Hashemi, T.H. Schultz, M.B. Wallace, J. Am. Chem. Soc. 113, 9692 (1991)

    Article  CAS  Google Scholar 

  40. K. Hirai, T. Itoh, H. Tomioka, Chem. Rev. 109, 3275 (2009)

    Article  CAS  PubMed  Google Scholar 

  41. M.Z. Kassaee, M.R. Nimlos, K.E. Downie, E.E. Waali, Tetrahedron 41, 1579 (1985)

    Article  CAS  Google Scholar 

  42. T. Noda, K. Suzuki, N. Katada, M. Niwa, J. Catal. 259, 203 (2008)

    Article  CAS  Google Scholar 

  43. F. Chevallier, Y.S. Halauko, C. Pecceu, I.F. Nassar, T.U. Dam, T. Roisnel, V.E. Matulis, O.A. Ivashkevich, F. Mongin, Org. Biomol. Chem. 9, 4671 (2011)

    Article  CAS  PubMed  Google Scholar 

  44. V.E. Matulis, Y.S. Halauko, O.A. Ivashkevich, P.N. Gaponik, J. Mol. Struct. THEOCHEM 909, 19 (2009)

    Article  CAS  Google Scholar 

  45. I.E. Charif, S.M. Mekelleche, D. Villemin, N. Mora-Diez, J. Mol. Struct. THEOCHEM 818, 1 (2007)

    Article  CAS  Google Scholar 

  46. H.A. De Abreu, W.B. De Almeida, H.A. Duarte, Chem. Phys. Lett. 383, 47 (2004)

    Article  CAS  Google Scholar 

  47. R. Casasnovas, J. Frau, J. Ortega-Castro, A. Salva, J. Donoso, F. Muñoz, J. Mol. Struct. THEOCHEM 912, 5 (2009)

    Article  CAS  Google Scholar 

  48. V.S. Bryantsev, Chem. Phys. Lett. 558, 42 (2013)

    Article  CAS  Google Scholar 

  49. R.W. Taft, Prog. Phys. Org. Chem. 14, 247–350 (1983)

    CAS  Google Scholar 

  50. I.A. Topol, G.J. Tawa, R.A. Caldwell, M.A. Eissenstat, S.K. Burt, J. Phys. Chem. A 104, 9619 (2000)

    Article  CAS  Google Scholar 

  51. M.D. Liptak, G.C. Shields, J. Am. Chem. Soc. 123, 7314 (2001)

    Article  CAS  PubMed  Google Scholar 

  52. A.M. Toth, M.D. Liptak, D.L. Phillips, G.C. Shields, J. Chem. Phys. 114, 4595 (2001)

    Article  CAS  Google Scholar 

  53. J.T. Muckerman, J.H. Skone, M. Ning, Y. Wasada-Tsutsui, Biochim. Biophys. Acta (BBA) Bioenerg. 1827, 882 (2013)

    Article  CAS  Google Scholar 

  54. J.C. Kromann, F. Larsen, H. Moustafa, J.H. Jensen, PeerJ 4, e2335 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. M.D. Liptak, K.C. Gross, P.G. Seybold, S. Feldgus, G.C. Shields, J. Am. Chem. Soc. 124, 6421 (2002)

    Article  CAS  PubMed  Google Scholar 

  56. M.D. Liptak, G.C. Shields, Int. J. Quantum Chem. 85, 727 (2001)

    Article  CAS  Google Scholar 

  57. J. Tomasi, M. Persico, Chem. Rev. 94, 2027 (1994)

    Article  CAS  Google Scholar 

  58. M. Cossi, V. Barone, B. Mennucci, J. Tomasi, Chem. Phys. Lett. 286, 253 (1998)

    Article  CAS  Google Scholar 

  59. V. Barone, M. Cossi, J. Tomasi, J. Comput. Chem. 19, 404 (1998)

    Article  CAS  Google Scholar 

  60. M. Cossi, V. Barone, J. Chem. Phys. 109, 6246 (1998)

    Article  CAS  Google Scholar 

  61. L.R. Domingo, P. Pérez, Org. Biomol. Chem. 9, 7168 (2011)

    Article  CAS  PubMed  Google Scholar 

  62. P.K. Chattaraj, S. Giri, S. Duley, J. Phys. Chem. A 116, 790 (2011)

    Article  CAS  PubMed  Google Scholar 

  63. B. Smit, D. Frenkel, Mol. Phys. 68, 951 (1989)

    Article  CAS  Google Scholar 

  64. R.G. Pearson, Inorg. Chem. 27, 734 (1988)

    Article  CAS  Google Scholar 

  65. E.P.L. Hunter, S.G. Lias, J. Phys. Chem. Ref. Data 27, 413 (1998)

    Article  CAS  Google Scholar 

  66. L.L. Lohr, H.B. Schlegel, K. Morokuma, J. Phys. Chem. 88, 1981 (1984)

    Article  CAS  Google Scholar 

  67. P.K. Nayak, N. Periasamy, Org. Electron. 10, 1396 (2009)

    Article  CAS  Google Scholar 

  68. K. Fukui, H. Kato, T. Yonezawa, Bull. Chem. Soc. Jpn. 33, 1197 (1960)

    Article  CAS  Google Scholar 

  69. S. Janietz, D.D.C. Bradley, M. Grell, C. Giebeler, M. Inbasekaran, E.P. Woo, Appl. Phys. Lett. 73, 2453 (1998)

    Article  CAS  Google Scholar 

  70. R.A. Kendall, T.H. Dunning Jr., R.J. Harrison, J. Chem. Phys. 96, 6796 (1992)

    Article  CAS  Google Scholar 

  71. J.-L. Bredas, Mater. Horizons 1, 17 (2014)

    Article  CAS  Google Scholar 

  72. R.G. Pearson, J. Org. Chem. 54, 1423 (1989)

    Article  CAS  Google Scholar 

  73. R.G. Parr, R.G. Pearson, J. Am. Chem. Soc. 105, 7512 (1983)

    Article  CAS  Google Scholar 

  74. R.G. Pearson, Proc. Natl. Acad. Sci. 83, 8440 (1986)

    Article  CAS  PubMed  Google Scholar 

  75. M.V. Putz, N. Russo, E. Sicilia, Theor. Chem. Acc. 114, 38 (2005)

    Article  CAS  Google Scholar 

  76. Z. Chen, C.S. Wannere, C. Corminboeuf, R. Puchta, P.R. Schleyer, Chem. Rev. 105, 3842 (2005)

    Article  CAS  Google Scholar 

  77. P.R. Schleyer, C. Maerker, A. Dransfeld, H. Jiao, N.J.E. Hommes, J. Am. Chem. Soc. 118, 6317 (1996)

    Article  CAS  Google Scholar 

  78. A. Stanger, J. Org. Chem. 71, 883 (2006)

    Article  CAS  PubMed  Google Scholar 

  79. P.R. Schleyer, M. Manoharan, Z.-X. Wang, B. Kiran, H. Jiao, R. Puchta, N.J.R.E. Hommes, Org. Lett. 3, 2465 (2001)

    Article  CAS  PubMed  Google Scholar 

  80. M. Randić, Chem. Rev. 103, 3449 (2003)

    Article  CAS  PubMed  Google Scholar 

  81. E.D. Glendening, C.R. Landis, F. Weinhold, Wiley Interdiscip. Rev. Comput. Mol. Sci. 2, 1 (2012)

    Article  CAS  Google Scholar 

  82. E.D. Glendening, F. Weinhold, J. Comput. Chem. 19, 610 (1998)

    Article  CAS  Google Scholar 

  83. F. Weinhold, C.R. Landis, Valency and Bonding: A Natural Bond Orbital Donor–Acceptor Perspective (Cambridge University Press, Cambridge, 2005)

    Book  Google Scholar 

  84. A.E. Reed, L.A. Curtiss, F. Weinhold, Chem. Rev. 88, 899 (1988)

    Article  CAS  Google Scholar 

  85. F. Weinhold, J. Comput. Chem. 33, 2363 (2012)

    Article  CAS  PubMed  Google Scholar 

  86. A. Luzar, J. Stefan, J. Mol. Liq. 46, 221 (1990)

    Article  CAS  Google Scholar 

  87. I.A. Koppel, R.W. Taft, F. Anvia, S.-Z. Zhu, L.-Q. Hu, K.-S. Sung, D.D. DesMarteau, L.M. Yagupolskii, Y.L. Yagupolskii, J. Am. Chem. Soc. 116, 3047 (1994)

    Article  CAS  Google Scholar 

  88. H. Chen, D.R. Justes, R.G. Cooks, Org. Lett. 7, 3949 (2005)

    Article  CAS  PubMed  Google Scholar 

  89. E.D. Raczynska, M. Decouzon, J. Gal, P. Maria, K. Wozniak, R. Kurg, S. N. Carins, ChemInform. 31, 6202 (2000)

    Google Scholar 

  90. M.P. Vlasenko, V.A. Ozeryanskii, J. Phys. Org. Chem. 30, e3609 (2017)

    Article  CAS  Google Scholar 

  91. B. Kovačević, Z.B. Maksić, Chem. Eur. J. 8, 1694 (2002)

    Article  PubMed  Google Scholar 

  92. R.L. Benoit, D. Lefebvre, M. Fréchette, Can. J. Chem. 65, 996 (1987)

    Article  CAS  Google Scholar 

  93. V.A. Ozeryanskii, M.P. Vlasenko, A.F. Pozharskii, Tetrahedron 69, 1919 (2013)

    Article  CAS  Google Scholar 

  94. Q. Jie, J. Guo-Zhu, J. Phys. Chem. A 48, 12983 (2013)

    Article  CAS  Google Scholar 

  95. B. Kovačević, Z.B. Maksić, Org. Lett. 3, 1523 (2001)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Moral support of Mr. Karim Ayoubi-Chianeh is appreciated. Financial support of Tarbiat Modares University (TMU) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamad Z. Kassaee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 39 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ayoubi-Chianeh, M., Kassaee, M.Z. Novel silicon super bases at DFT level of theory: effects of fused benzene rings on the basicity of 2,4,6-cycloheptatrienesilylene. Res Chem Intermed 45, 4677–4691 (2019). https://doi.org/10.1007/s11164-019-03856-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-019-03856-7

Keywords

Navigation