Skip to main content
Log in

The selectivity of the transition metals encapsulated in a Fe9O12 cage

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

The transition metals (TM) doping a Fe9O12 cage have been systemically studied by density functional theory. And then the structures, electronic and magnetic properties of them have been discussed. It can be found that V, Nb, Mo, Ta and W atoms prefer to encapsulate in a Fe9O12 cage and then form a core@shell structure. Here, Ta@Fe9O12 is proposed to be the most favorable structure. Zr, Hf and Ta atoms are conducive to stabilize a Fe9O12 cage. All the TM doping Fe9O12 clusters are more kinetically active. The highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) of TM doping Fe9O12 clusters are mostly by virtue of d orbital distribution. More electrons are transferred from the Zr and Hf atoms to the Fe9O12 cage than from other transition metals. Only the spin values of Mn, Cr, and Ti atoms in a Fe9O12 cage are higher than 2.5 μB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Y. Li, C. Cai, C. Zhao, Y. Gu, Mod. Phys. Lett. B. 30, 1650239 (2018)

    Article  CAS  Google Scholar 

  2. L.T. Lu, N.T. Dung, L.D. Tung, C.T. Thanh, O.K. Quy, N.V. Chuc, S. Maenosono, N.T.K. Thanh, Nanoscale 7, 19596 (2015)

    Article  CAS  Google Scholar 

  3. J. Liu, Z. Sun, Y. Deng, Y. Zou, C. Li, X. Guo, L. Xiong, Y. Gao, F. Li, D. Zhao, Angew. Chem. Int. Ed. 48, 5875 (2009)

    Article  CAS  Google Scholar 

  4. B. Ankamwar, T.C. Lai, J.H. Huang, R.S. Liu, M. Hsiao, C.H. Chen, Y.K. Hwu, Nanotechnology 21, 75102 (2010)

    Article  CAS  Google Scholar 

  5. X. Liu, X. Duan, Q. Qin, Q. Wang, W. Zheng, CrystEngComm 15, 3284 (2013)

    Article  CAS  Google Scholar 

  6. M.J. Bradley, A.J. Biacchi, R.E. Schaak, Chem. Mater. 25, 1886 (2013)

    Article  CAS  Google Scholar 

  7. Z. Xu, Y. Hou, S. Sun, J. Am. Chem. Soc. 129, 8698 (2007)

    Article  CAS  PubMed  Google Scholar 

  8. D.J. Huang, C.F. Chang, H.-T. Jeng, G.Y. Guo, H.-J. Lin, W.B. Wu, H.C. Ku, A. Fujimori, Y. Takahashi, C.T. Chen, Phys. Rev. Lett. 93, 077204 (2004)

    Article  CAS  PubMed  Google Scholar 

  9. D. Odkhuu, P. Taivansaikhan, W.S. Yun, S.C. Hong, J. Appl. Phys. 115, 17A916 (2014)

    Article  CAS  Google Scholar 

  10. R.C. Rai, S. Wilser, M. Guminiak, B. Cai, M.L. Nakarmi, Appl. Phys. A 106, 207 (2012)

    Article  CAS  Google Scholar 

  11. Q.-C. Sun, H. Sims, D. Mazumdar, J.X. Ma, B.S. Holinsworth, K.R. O’Neal, G. Kim, W.H. Butler, A. Gupta, J.L. Musfeldt, Phys. Rev. B. 86, 205106 (2012)

    Article  CAS  Google Scholar 

  12. Q. Song, Z.J. Zhang, J. Am. Chem. Soc. 134, 10182 (2012)

    Article  CAS  PubMed  Google Scholar 

  13. J.C. Garcia, W.V.M. Machado, L.V.C. Assali, J.F. Justo, Diam. Relat. Mater. 20, 1222 (2011)

    Article  CAS  Google Scholar 

  14. Y. Hu, C. Ji, X. Wang, J. Huo, Q. Liu, Y. Song, Sci. Rep-UK 7, 16485 (2017)

    Article  CAS  Google Scholar 

  15. D.Z. Zhang, Y.E. Sun, C.X. Jiang, Y. Zhang, Sensor. Actuat. B-Chem. 242, 15 (2017)

    Article  CAS  Google Scholar 

  16. D.Z. Zhang, J.F. Wu, P. Li, Y.H. Cao, J. Mater. Chem. A. 5, 20666 (2017)

    Article  CAS  Google Scholar 

  17. D.Z. Zhang, M.S. Pang, J.F. Wu, Y.H. Cao, New J. Chem. 43, 4900 (2019)

    Article  CAS  Google Scholar 

  18. D.Z. Zhang, H.Y. Chang, Y.E. Sun, C.X. Jiang, Y. Yao, Y. Zhang, Sens. Actuator B-Chem. 252, 624 (2017)

    Article  CAS  Google Scholar 

  19. D.Z. Zhang, Y.E. Sun, C.X. Jiang, Y. Yao, D.Y. Wang, Y. Zhang, Sens. Actuator B-Chem. 253, 1120 (2017)

    Article  CAS  Google Scholar 

  20. J.F. Wu, D.Z. Zhang, Y.H. Cao, J. Colloid Interface Sci. 529, 556 (2018)

    Article  CAS  PubMed  Google Scholar 

  21. Z. Zhao, Z. Li, Q. Wang, Mater. Res. Express. 5, 065605 (2018)

    Article  CAS  Google Scholar 

  22. B. Delley, J. Chem. Phys. 92, 508 (1990)

    Article  CAS  Google Scholar 

  23. B. Delley, J. Chem. Phys. 113, 7756 (2000)

    Article  CAS  Google Scholar 

  24. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  CAS  Google Scholar 

  25. S.A. Khandy, D.C. Gupta, RSC Adv. 6, 48009 (2016)

    Article  CAS  Google Scholar 

  26. Z. Zhao, Z. Li, Q. Wang, D. Wang, C. Wu, Z. Zhou, Comput. Theor. Chem. 1095, 9 (2016)

    Article  CAS  Google Scholar 

  27. Z. Li, Z. Zhou, H. Wang, S. Li, Z. Zhao, J. Cryst. Growth 449, 22 (2016)

    Article  CAS  Google Scholar 

  28. Z. Li, Z. Zhao, Phase Transit. 91, 426 (2018)

    Article  CAS  Google Scholar 

  29. R.S. Mülliken, J. Chem. Phys. 23, 1841 (1955)

    Article  Google Scholar 

  30. S.A. Khandy, I. Islam, D.C. Gupta, R. Khenata, A. Laref, Sci. Rep-UK 9, 1475 (2019)

    Article  CAS  Google Scholar 

  31. S.A. Khandy, Mater. Res. Express. 5, 056516 (2018)

    Article  CAS  Google Scholar 

  32. S.A. Khandy, I. Islam, D.C. Gupta, A. Laref, J. Mol. Model. 24, 131 (2018)

    Article  CAS  PubMed  Google Scholar 

  33. Z. Li, Z. Zhou, Z. Zhao, Q. Wang, Int. J. Mod. Phys. B. 32, 1850187 (2018)

    Article  CAS  Google Scholar 

  34. C. Zhang, H. Cui, J. Shen, Chin. Phys. B. 21, 103102 (2012)

    Article  CAS  Google Scholar 

  35. X.L. Ding, W. Xue, Y.P. Ma, Z.C. Wang, S.G. He, J. Chem. Phys. 130, 014303 (2009)

    Article  CAS  PubMed  Google Scholar 

  36. J. Fan, L.-S. Wang, J. Chem. Phys. 102, 8714 (1995)

    Article  CAS  Google Scholar 

  37. X. Xiao, G. Liu, B. Hu, J. Wang, A. Ullah, Mater. Charact. 82, 130 (2013)

    Article  CAS  Google Scholar 

  38. Z. Li, Z. Zhao, Q. Wang, X. Yin, Mater. Res. Express. 5, 046105 (2018)

    Article  CAS  Google Scholar 

  39. Z. Li, Z. Zhao, Z. Zhou, Q. Wang, Mater. Res. Express. 5, 026524 (2018)

    Article  CAS  Google Scholar 

  40. Z. Li, Z. Zhao, S. Li, Q. Wang, Comput. Mater. Sci. 110, 340 (2015)

    Article  CAS  Google Scholar 

  41. Z. Li, Z. Zhao, S. Li, Q. Wang, Solid State Commun. 221, 5 (2015)

    Article  CAS  Google Scholar 

  42. Z. Li, Z. Zhao, Mater. Chem. Phys. 187, 54 (2017)

    Article  CAS  Google Scholar 

  43. Z. Li, Z. Zhao, Res. Chem. Intermediat. 45, 833 (2019)

    Article  CAS  Google Scholar 

  44. X. Wang, H. Qin, Y. Chen, J. Hu, J. Phys. Chem. C 118, 28548 (2014)

    Article  CAS  Google Scholar 

  45. P. Tereshchuk, J.L.F.D. Silva, Phys. Rev. B. 85, 195461 (2012)

    Article  CAS  Google Scholar 

  46. G.S. Shahane, K.V. Zipare, S.S. Bandgar, V.L. Mathe, J. Mater. Sci. Mater. Electron. 28, 4146 (2017)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial support from the Key Fund Project of the National Science Foundation, People’s Republic of China (Grant No. 51634004), the Doctoral Scientific Research Foundation of Liaoning Province (Grant No. 20180551213), Key Laboratory of Chemical Metallurgy Engineering Liaoning Province, University of Science and Technology Liaoning (Grant No. USTLKFSY201711) and the Fund Project of University of Science and Technology Liaoning (Grant No. 2017YY02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Zhao, Z. The selectivity of the transition metals encapsulated in a Fe9O12 cage. Res Chem Intermed 45, 4573–4582 (2019). https://doi.org/10.1007/s11164-019-03850-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-019-03850-z

Keywords

Navigation