Skip to main content
Log in

CeO2 promoting allyl alcohol synthesis from glycerol direct conversion over MoFe/CeO2 oxide catalysts: morphology and particle sizes dependent

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

A Correction to this article was published on 04 January 2019

This article has been updated

Abstract

MoFe-N, MoFe/c–CeO2, MoFe/p1–CeO2, and MoFe/p2–CeO2 (where N, c, and p stand for non-supported, nanocube, and nanoparticle) oxide catalysts were designed for gas-glycerol direct catalytic conversion into allyl alcohol. The catalysts also were characterized by XRD, TEM, BET, H2-TPR, and NH3-TPD. Mo–Fe oxides were highly dispersed on the surface of c-CeO2 and p-CeO2 supports, different with the MoFe-N consist of crystalline Fe2(MoO4)3 and Fe2O3 crystalline phase. The support effect and special natural property of CeO2 significantly improve the allyl alcohol selectivity from gas-glycerol over MoFe/CeO2. The p-CeO2 with low particle sizes and crystalline degree was superior to high-crystalline nanocube c-CeO2 to promote its interaction with the MoFe oxide active components, and improve the surface acid site concentration and reducibility of MoFe/CeO2 as well as catalytic activity and stability for allyl alcohol synthesis from gas-glycerol without any extra hydrogen donors. Over the MoFe/p2–CeO2, the glycerol conversion reached 97.1%, and the selectivity of allyl alcohol, enthanal, propanoic acid, and acrylic acid were 23.3%, 8.6%, 12.6%, and 7.8%, respectively, yielding allyl alcohol of 22.6%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Change history

  • 04 January 2019

    In the original publication of the article, the chemical compounds “enthanal” and “propanal” were incorrectly published as “entanol” and “propanol”.

References

  1. D.E. Bloom, Science 333, 562 (2011)

    Article  CAS  PubMed  Google Scholar 

  2. C.T. Wu, K.M.K. Yu, F.L. Liao, N. Young, P. Nellist, A. Dent, A. Kroner, S.C.E. Tsang, Nat. Commun. 3, 1050 (2012)

    Article  CAS  PubMed  Google Scholar 

  3. B. Obama, Science 355, 126 (2017)

    Article  CAS  PubMed  Google Scholar 

  4. C.H. Zhou, J.N. Beltramini, Y.X. Fan, G.Q. Lu, Chem. Soc. Rev. 37, 527 (2008)

    Article  PubMed  Google Scholar 

  5. F.X. Yang, M.A. Hanna, R.C. Sun, Biotechnol. Biofuels 5, 13 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. P. Cintas, S. Tagliapietra, E. Calcio Gaudino, G. Palmisano, G. Cravotto, Green Chem. 16 1056 (2014)

  7. R.A. Sheldon, Green Chem. 16, 950 (2014)

    Article  CAS  Google Scholar 

  8. Y. Nakagawa, M. Tamura, K. Tomishige, Res. Chem. Intermed. 44, 3879 (2018)

    Article  CAS  Google Scholar 

  9. H.T. Nguyen, G.S. Kamali Kannangara, Chem. Soc. Rev. 42, 9454 (2013)

    Article  CAS  Google Scholar 

  10. D.L. Sun, Y. Yamada, S. Sato, W. Ueda, Appl. Catal. B: Environ. 193, 75 (2016)

    Article  CAS  Google Scholar 

  11. NPCS, B.o. Consultants, Engineers, Industrial Alcohol Technology Handbook, Asia Pacific Business Press Inc. (2010)

  12. K. Weissermel, H.J. Arpe, Industrial organic chemistry, 4th edition, 312 (1994)

  13. J.G. Speight, Chemical and Process Design Handbook, McGraw Hill, (2002)

  14. E. Arceo, P. Marsden, R.G. Bergman, J.A. Ellman, Chem. Commun. 203, 3357 (2009)

    Article  CAS  Google Scholar 

  15. S. Tazawa, N. Ota, M. Tamura, Y. Nakagawa, K. Okumura, K. Tomishige, ACS Catal. 6, 6393 (2016)

    Article  CAS  Google Scholar 

  16. G.M. Lari, Z.P. Chen, C. Mondelli, J. Pérez-Ramírez, ChemCatChem. 9, 2195 (2017)

    Article  CAS  Google Scholar 

  17. Y. Liu, H. Tüysüz, C.J. Jia, M. Schwickardi, R. Rinaldi, A.H. Lu, W. Schmidt, F. Schüth, Chem. Commun. 46, 1238 (2010)

    Article  CAS  Google Scholar 

  18. T. Yoshikawa, T. Tago, A. Nakamura, A. Konaka, M. Mukaida, T. Masuda, Res. Chem. Intermed. 37, 1247 (2011)

    Article  CAS  Google Scholar 

  19. L. Harvey, G. Sánchez, E.M. Kennedy, M. Stockenhuber, Asia-Pac. J. Chem. Eng. 10, 598 (2015)

    CAS  Google Scholar 

  20. G. Sánchez, B.Z. Dlugogorski, E.M. Kennedy, M. Stockenhuber, Appl. Catal. A: Gen. 509, 130 (2016)

    Article  CAS  Google Scholar 

  21. A. Konak, T. Tag, T. Yoshikaw, A. Nakamur, T. Masud, Appl. Catal. B: Environ. 146, 267 (2014)

    Article  CAS  Google Scholar 

  22. G. Sánchez, J. Friggieri, C. Keast, M. Drewery, B.Z. Dlugogorski, E. Kennedy, M. Stockenhuber, Appl. Catal. B: Environ. 152–153, 117 (2014)

    Google Scholar 

  23. H. Lan, X. Xiao, S.L. Yuan, B. Zhang, G.L. Zhou, Y. Jiang, Acta Phys. Chim. Sin. 33, 2301 (2017)

    CAS  Google Scholar 

  24. H. Lan, X. Xiao, S.L. Yuan, B. Zhang, G.L. Zhou, Y. Jiang, Catal. Lett. 147, 2187 (2017)

    Article  CAS  Google Scholar 

  25. M.H. Haider, N.F. Dummer, D.W. Knight, R.L. Jenkins, M. Howard, J. Moulijn, S.H. Taylor, G.J. Hutchings, Nature Chem. 7, 1028 (2015)

    Article  CAS  Google Scholar 

  26. H.X. Mai, L.D. Sun, Y.W. Zhang, R. Si, W. Feng, H.P. Zhang, H.C. Liu, C.H. Yan, Nanorods, and Nanocubes. J. Phys. Chem. B 109, 24380 (2005)

    Article  CAS  PubMed  Google Scholar 

  27. Y.M. Liu, L.F. Luo, Y.X. Gao, W.X. Huang, Appl. Catal. B Environ. 197, 214 (2016)

    Article  CAS  Google Scholar 

  28. S.J. Chang, M. Li, Q. Hua, L.J. Zhang, Y.S. Ma, B.J. Ye, W.X. Huang, J. Catal. 293, 195 (2012)

    Article  CAS  Google Scholar 

  29. Y.J. Lee, G.H. He, A.J. Akey, R. Si, I.P. Herman, J. Am. Chem. Soc. 133, 12952 (2011)

    Article  CAS  PubMed  Google Scholar 

  30. G.L. Zhou, B.G. Gui, H.M. Xie, F. Yang, Y. Chen, S.M. Chen, X.X. Zheng, J. Ind. Eng. Chem. 20, 160 (2014)

    Article  CAS  Google Scholar 

  31. G.L. Zhou, H. Lan, T.T. Gao, H.M. Xie, Chem. Eng. J. 246, 53 (2014)

    Article  CAS  Google Scholar 

  32. H. Lan, G.L. Zhou, C.J. Luo, Y.R. Yu, G.Z. Zhang, Int. J. Chem. React. Eng. 14, 757 (2016)

    CAS  Google Scholar 

  33. R.M.M. Abbaslou, A. Tavassoli, J. Soltan, A.K. Dalai, Appl. Catal. A: Gen. 367, 47 (2009)

    Article  CAS  Google Scholar 

  34. Z.B. Lei, S.Y. Bai, L.Q. Dang, H.A. Xia, S.B. Liu, Micropor. Mesopor. Mater. 123, 306 (2009)

    Article  CAS  Google Scholar 

  35. Y.S. Li, Y. Chen, L. Li, J.L. Gu, W.R. Zhao, L. Li, J.L. Shi, Appl. Catal. A: Gen 366, 57 (2009)

    Article  CAS  Google Scholar 

  36. S.D. Qina, C.H. Zhang, J. Xu, B.S. Wu, H.W. Xiang, Y.W. Li, J. Mol. Catal. A: Chem. 304, 128 (2009)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jia Zeng.

Additional information

The original version of this article is revised: The chemical compounds “entanol” and “propanol” were updated as “enthanal” and “propanal”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lan, H., Zeng, J., Zhang, B. et al. CeO2 promoting allyl alcohol synthesis from glycerol direct conversion over MoFe/CeO2 oxide catalysts: morphology and particle sizes dependent. Res Chem Intermed 45, 1565–1580 (2019). https://doi.org/10.1007/s11164-018-3694-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-018-3694-4

Keywords

Navigation