Skip to main content
Log in

Synergistic Effect of Mo–Fe Bimetal Oxides Promoting Catalytic Conversion of Glycerol to Allyl Alcohol

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

In this study, KIT-6 silica with well-ordered 3-D mesoporosity was developed as support to prepare Fe/KIT-6, Mo/KIT-6, and MoFe-x/KIT-6 (x = 0.25, 0.3, and 0.35) oxide catalysts for catalytic conversion of gas-glycerol into allyl alcohol. The catalysts were also characterized by XRD, BET, XPS, H2-TPR, and NH3-TPD. The catalytic conversion of glycerol showed a positive correlation with the surface moderate acid density of catalysts, following the order of Fe/KIT-6 < MoFe0.25/KIT-6 < MoFe0.35/KIT-6 < MoFe0.3/KIT-6 < Mo/KIT-6. Differently, the production of allyl alcohol was closely related with the moderate redox sites following a hydrogen transfer mechanism. The MoFe-x/KIT-6 showed much higher selectivity than the Fe/KIT-6 and Mo/KIT-6, which resulted from the strong synergistic effect between Fe2O3 and MoO3 altering the surface moderate acid strength, surface acid amounts, and reducibility of catalysts. The MoFe-0.3/KIT-6 exhibited a remarkable yield of 26.8% of allyl alcohol at 94.0% conversion of glycerol without external hydrogen donors supplied to the system, which benefits from the good balance between moderate acidity and weak reducibility of catalysts. The developed cubic Ia3d meso-structure was also benefit for improving the catalytic stability of MoFe0.3/KIT-6.

Graphical Abstract

Allyl alcohol can produce from gas–solid catalytic conversion of glycerol over the weekly acidic Fe2O3 and MoO3 supported on SiO2. The yield of allyl alcohol can be significantly improved over the MoO3–Fe2O3/SiO2 composite oxide catalysts, because of the strong interaction between MoO3 and Fe2O3. The catalytic conversion of glycerol was positively related with the surface weak acid site density of catalysts, while the allyl alcohol seems to form over the redox sites. Comparing with the single component Fe2O3/SiO2and MoO3/SiO2 catalysts, the strong synergistic effect of MoO3 with Fe2O3 guarantee the MoO3–Fe2O3/SiO2 having relatively high surface week acid site density and certain reducibility, which showed a good balance between weak acidity and reducibility thus obviously increasing the allyl alcohol yield from 26.8 to 94% catalytic conversion of glycerol through gas–solid catalytic reaction without any additives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 1
Fig. 7

Similar content being viewed by others

References

  1. Bloom DE (2011) Science 333:562–569

    Article  CAS  Google Scholar 

  2. Wu CT, Yu KMK, Liao FL, Young N, Nellist P, Dent A, Kroner A, Tsang SCE (2015) Nat Commun 3:1050–1058

    Article  Google Scholar 

  3. Haider MH, Dummer NF, Knight DW, Jenkins RL, Howard M, Moulijn J, Taylor SH, Hutchings GJ (2015) Nat Chem 7:1028–1032

    Article  CAS  Google Scholar 

  4. Bhanuchander P, Priya SS, Kumar VP, Hussain Sk, Rajan NP, Bhargava SK, Chary KVR (2017) Catal Lett 147:845–855

    Article  CAS  Google Scholar 

  5. Yang FX, Hanna MA, Sun RC (2012) Biotechnol Biofuels 5:13–22

    Article  CAS  Google Scholar 

  6. Cintas P, Tagliapietra S, Gaudino EC, Palmisano G, Cravotto G (2014) Green Chem 16:1056–1065

    Article  CAS  Google Scholar 

  7. Bagheri S, Julkapli NM, Yehye WA (2015) Renew Sust Energ Rev 41:113–127

    Article  CAS  Google Scholar 

  8. Tran NH, Kannangara GSK (2013) Chem Soc Rev 42:9454–9479

    Article  CAS  Google Scholar 

  9. Sun DL, Yamada Y, Sato S, Ueda W (2016) Appl Catal B Environ 193:75–92

    Article  CAS  Google Scholar 

  10. Edake M, Dalil M, Mahboub MJD, Dubois JL, Patience GS (2017) RSC Adv 7:3853–3860

    Article  CAS  Google Scholar 

  11. Lee M, Hwang YK, Chang JS, Chae HJ, Hwang DW (2016) Catal Commun 84:5–10

    Article  CAS  Google Scholar 

  12. García-Fernández S, Gandarias I, Requies J, Güemez MB, Bennici S, Auroux A, Arias PL (2015) J Catal 323:65–75

    Article  Google Scholar 

  13. Salazar JB, Falcone DD, Pham HN, Datye AK, Passos FB, Davis RJ (2014) Appl Catal A 482:137–144

    Article  CAS  Google Scholar 

  14. Zhu SH, Qiu YN, Zhu YL, Hao SL, Zheng HY, Li YW (2013) Catal Today 212:120–126

    Article  CAS  Google Scholar 

  15. Zou B, Ren SJ, Ye XP (2016) ChemSusChem 9:3268–3271

    Article  CAS  Google Scholar 

  16. Omata K, Izumi S, Murayama T, Ueda W (2013) Catal Today 201:7–11

    Article  CAS  Google Scholar 

  17. Shen LQ, Yin HB, Wang AL, Feng YH, Shen YT, Wu ZA, Jiang TS (2012) Chem Eng J 180:277–283

    Article  CAS  Google Scholar 

  18. Alhanash A, Kozhevnikova EF, Kozhevnikov IV (2010) Appl Catal A 378:11–18

    Article  CAS  Google Scholar 

  19. Liu Y, Tüysüz H, Jia CJ, Schwickardi M, Rinaldi R, Lu AH, Schmidt W, Schüth F (2010) Chem Commun 46:1238–1240

    Article  CAS  Google Scholar 

  20. Arceo E, Marsden P, Bergman RG, Ellman JA (2009) Chem Commun 23:3357–3359

    Article  Google Scholar 

  21. NPCS Bo. Consultants, Engineers (2010) Industrial alcohol technology handbook. Asia Pacific Business Press Inc, New Delhi

    Google Scholar 

  22. Weissermel K, Arpe HJ (1994) Industrial organic chemistry, 4th edn. Wiley, New York pp 312–326

    Google Scholar 

  23. Speight JG (2002) Chemical and process design handbook. McGraw Hill, Hightstown

    Google Scholar 

  24. Yoshikawa T, Tago T, Nakamura A, Konaka A, Mukaida M, Masuda T (2011) Res Chem Intermed 37:1247–1256

    Article  CAS  Google Scholar 

  25. Harvey L, Sánchez G, Kennedy EM, Stockenhuber M (2015) Asia-Pac J Chem Eng 10:598–606

    CAS  Google Scholar 

  26. Sánchez G, Dlugogorski BZ, Kennedy EM, Stockenhuber M (2016) Appl Catal A 509:130–142

    Article  Google Scholar 

  27. Konak A, Tag T, Yoshikaw T, Nakamur A, Masud T (2014) Appl Catal B 146:267–273

    Article  Google Scholar 

  28. Sánchez G, Friggieri J, Keast C, Drewery M, Dlugogorski BZ, Kennedy E, Stockenhuber M (2014) Appl Catal B-Environ 152–153:117–128

    Google Scholar 

  29. Ülgen A (2009) RWTH Aachen University, p 137

  30. Soni K, Rana BS, Sinha AK, Bhaumik A, Nandi M, Kumar M, Dhar GM (2009) Appl Catal B 90:55–63

    Article  CAS  Google Scholar 

  31. Zhou GL, Wu T, Xie HM, Zheng XX (2013) Int J Hydrog Energy 38:10012–10018

    Article  CAS  Google Scholar 

  32. Boulaoued A, Fechete I, Donnio B, Bernard M, Turek P (2012) Microporous Mesoporous Mater 155:131–142

    Article  CAS  Google Scholar 

  33. Katryniok B, Paul S, Capron M, Lancelot C, Baca VB, Rey P, Dumeignil F (2010) Green Chem 12:1922–1925

    Article  CAS  Google Scholar 

  34. Kleitz F, Choi SH, Ryoo R (2003) Chem Commun 17:2136–2137

    Article  Google Scholar 

  35. Sing KSW, Everett DH, Haul RAW, Moscou L, Pierott RA, Rouquerol J (1985) Pure Appl Chem 57:603–619

    Article  CAS  Google Scholar 

  36. Liu ZM, Su H, Chen BH, Li JH, Woo SI (2016) Chem Eng J 299:255–262

    Article  CAS  Google Scholar 

  37. Brookes C, Wells PP, Cibin G, Dimitratos N, Jones W, Morgan DJ, Bowker M (2014) ACS Catal 4:243–250

    Article  CAS  Google Scholar 

  38. Spojakina A, Kraleva E, Jiratova K, Petrov L (2005) Appl Catal A 288:10–17

    Article  CAS  Google Scholar 

  39. Zafeiratos S, Papakonstantinou G, Jacksic MM, Neophytides SG (2005) J Catal 232:127–136

    Article  CAS  Google Scholar 

  40. Li YS, Chen Y, Li L, Gu JL, Zhao WR, Li L, Shi JL (2009) Appl Catal A 366:57–64

    Article  CAS  Google Scholar 

  41. Zhou GL, Lan H, Gao TT, Xie HM (2014) Chem Eng J 246:53–63

    Article  CAS  Google Scholar 

  42. Bartholomew CH (2001) Appl Catal A 212:17–60

    Article  CAS  Google Scholar 

  43. Suprun W, Lutecki M, Haber T, Papp H (2009) J Mol Catal A 309:71–78

    Article  CAS  Google Scholar 

  44. Deutsch J, Martin A, Lieske H (2007) J Catal 245:428–435

    Article  CAS  Google Scholar 

  45. Clacens JM, Pouilloux Y, Barrault J (2002) Appl Catal A 227:181–190

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was financially supported by Project of CAS “Light of West China” program, 2015.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Biao Zhang or Yi Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lan, H., Xiao, X., Yuan, S. et al. Synergistic Effect of Mo–Fe Bimetal Oxides Promoting Catalytic Conversion of Glycerol to Allyl Alcohol. Catal Lett 147, 2187–2199 (2017). https://doi.org/10.1007/s10562-017-2124-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-017-2124-3

Keywords

Navigation