Research on Chemical Intermediates

, Volume 44, Issue 9, pp 5403–5417 | Cite as

Optimal extraction, sequential fractionation and structural characterization of soda lignin

  • Namrata Kumar
  • Soumya Vijayshankar
  • Pranav Pasupathi
  • Sundaramoorthy Nirmal Kumar
  • Poonguzhali Elangovan
  • Mathur Rajesh
  • Krishnamurthi Tamilarasan


In this research, soda lignin was extracted from Bambusa bambos using a soda pulping process, and interaction effects of pulping variables were statistically analyzed by the central composite design methodology. A statistical model predicted that the maximum recovery of soda lignin would be 104.6 mg/g of biomass in the following optimized process conditions: sodium hydroxide concentration (1.3% w/v), biomass concentration (10% w/v) and 150 min of pulping. The precipitated soda lignin was sequentially fractionated with organic solvents (chloroform, dichloromethane and n-butanol). The extracted soda lignin fractions, chloroform fraction (F1), dichloromethane (F2) and n-butanol (F3) were subsequently characterized by UV, FTIR, thermogravimetric analysis and 1H NMR spectral analysis. According to analytical characterization of lignin fractions, the molecular weight of lignin fractions increased gradually from fraction 1 to 3 and their polydispersity decreased dramatically compared with the unfractionated lignin. TG/DTG showed that the low molecular weight fractions generally have lower thermal stability. Functional group analysis results indicated that the guaiacyl unit content, molecular weight and thermal stability increased from F1 to F3, whereas the phenolic acid content significantly decreased. Solvent fractionation method to separate well defined structure of lignin molecules, which are likely having the extreme potential applications.


Soda pulping Central composite design Solvent fractionation Phenolic acids Polydispersity 



Authors are thankful to the Management of SRM Institute of Science and Technology and Department of chemical engineering for their support to carry out this research work and also kindly supported by Interdisciplinary Institute of Indian System Of Medicine for providing NMR analysis facilities.


  1. 1.
    K. Karimi, M.J. Taherzadeh, Bioresour. Technol. 200, 1008 (2006)CrossRefGoogle Scholar
  2. 2.
    A. Garcia, A. Toledanoa, L. Serranoa, I. Eguesa, M. Gonzaleza, F. Marinb, J. Labidi, Sep. Purif. Technol. 68, 193 (2009)CrossRefGoogle Scholar
  3. 3.
    G. Wang, H. Chen, Sep. Purif. Technol. 120, 402 (2013)CrossRefGoogle Scholar
  4. 4.
    C. Iwona, B. Grzegorz, R. Kurt, L.J. James, L. Hanwu, Bioresour. Technol. 118, 30 (2012)CrossRefGoogle Scholar
  5. 5.
    B. Joffres, C. Lorentza, M. Vidalieb, D. Laurentia, A.A. Quoineaudb, N. Charonb, A. Daudinb, A. Quignardb, C. Geantet, Appl. Catal. B 145, 167 (2014)CrossRefGoogle Scholar
  6. 6.
    E. Dorrestijn, L.J.J. Laarhoven, I.W.C.E. Arends, P. Mulder, J. Anal. Appl. Pyrol. 54, 153 (2000)CrossRefGoogle Scholar
  7. 7.
    Y.C. Sun, J.K. Xu, F. Xu, R.C. Sun, Ind. Crops Prod. 47, 277(2013)CrossRefGoogle Scholar
  8. 8.
    I. Bari, F. Liuzzi, A. Villone, G. Braccio, Appl. Energy 102, 179 (2013)CrossRefGoogle Scholar
  9. 9.
    R. Hage, L. Chrusciel, L. Desharnais, N. Brosse, Bioresour. Technol. 101, 9321 (2010)CrossRefPubMedGoogle Scholar
  10. 10.
    N. Uppugundla, L. da Costa Sousa, S.P.S. Chundawat, X. Yu, B. Simmons, S. Singh, X. Gao, R. Kumar, C.E. Wyman, B.E. Dale, V. Balan, Biotechnol. Biofuels 7, 1 (2014)CrossRefGoogle Scholar
  11. 11.
    P. Gullón, A. Romaní, C. Vila, G. Garrote, J.C. Parajó, Biofuels, Bioprod. Biorefin. 6, 219 (2012)CrossRefGoogle Scholar
  12. 12.
    C.R.P. Paula, O. Cátia, A.C. Carina, G. Alexandre, F. Tiago, A. José, E.R. Alírio, Ind. Crops Prod. 71, 153 (2015)CrossRefGoogle Scholar
  13. 13.
    D. Scordia, S.L. Cosentino, T.W. Jeffries, Ind. Crops Prod. 49, 392 (2013)CrossRefGoogle Scholar
  14. 14.
    S.B. Patrícia, E. Xabier, A.G. Darci, L. Jalel, Ind. Crops Prod. 55, 149 (2014)CrossRefGoogle Scholar
  15. 15.
    C.G. Boeriu, D. Bravo, R.J.A. Gosselink, J.E.G. Van Dam, Ind. Crops Prod. 20, 205 (2004)CrossRefGoogle Scholar
  16. 16.
    D. Schorr, P.N. Diouf, T. Stevanovic, Ind. Crops Prod. 52, 65 (2014)CrossRefGoogle Scholar
  17. 17.
    V.L. Tainise, F.H. Fabricio, A.D. Thiago, P.R. Luiz, I.B.D. Graciela, L.E.M. Washington, Sep. Purif. Technol. 154, 82 (2015)CrossRefGoogle Scholar
  18. 18.
    F.G. Sales, L.C.A. Maranhão, N.M.L. Filho, C.A.M. Abreu, Chem. Eng. Sci. 62, 5386 (2007)CrossRefGoogle Scholar
  19. 19.
    Y. Park, W.O.S. Doherty, P.J. Halley, Ind. Crops Prod. 27, 163 (2008)CrossRefGoogle Scholar
  20. 20.
    J.H. Lora, W.G. Glasser, J. Polym. Environ. 10, 39 (2002)CrossRefGoogle Scholar
  21. 21.
    D. Ahuja, A. Kaushik, G.S. Chauhan, Int. J. Biol. Macromol. 97, 403 (2017)CrossRefPubMedGoogle Scholar
  22. 22.
    M. Brahima, N. Boussettaa, N. Grimia, E. Vorobieva, I. Zieger-Devinb, N. Brosse, Ind. Crops Prod. 95, 643 (2017)CrossRefGoogle Scholar
  23. 23.
    H. Chung, N.R. Washburn, Green Mater. 1, 137 (2012)CrossRefGoogle Scholar
  24. 24.
    A. Toledano, A. García, I. Mondragon, J. Labidi, Sep. Purif. Technol. 71, 38 (2010)CrossRefGoogle Scholar
  25. 25.
    X. Jiang, D. Savithri, X. Du, S. Pawar, H. Jameel, H.M. Chang, X. Zhou, ACS Sustain. Chem. Eng. 5, 835 (2016)CrossRefGoogle Scholar
  26. 26.
    A.S. Jääskeläinen, T. Liitiä, A. Mikkelson, T. Tamminen, Ind. Crops Prod. 103, 51 (2017)CrossRefGoogle Scholar
  27. 27.
    C. Huang, J. He, L. Du, D. Min, Q. Young, J. Wood Chem. Technol. 36, 157 (2016)CrossRefGoogle Scholar
  28. 28.
    C. Huang, J. He, R. Narron, Y. Wang, Q. Yong, ACS Sustain. Chem. Eng. 5, 11770 (2017)CrossRefGoogle Scholar
  29. 29.
    S. Srikanth, M. Swathi, M. Tejaswini, G. Sharmila, C. Muthukumaran, M.K. Jaganathan, K. Tamilarasan, Biocatal. Agric. Biotechnol. 3, 7 (2014)Google Scholar
  30. 30.
    S. Padmanaban, N. Balaji, C. Muthukumaran, K. Tamilarasan, 3 Biotechnol. 5, 1067 (2015)Google Scholar
  31. 31.
    J. Manisha, S. Mariya, G. Sharmila, C. Muthukumaran, G. Baskar, K. Tamilarasan, Chem. Eng. Technol. 38, 1444 (2015)CrossRefGoogle Scholar
  32. 32.
    N. Manoj Kumar, C. Muthukumaran, M. Rajesh, J. Gen. Appl. Microbiol. 61, 157 (2015)CrossRefGoogle Scholar
  33. 33.
    J. Praveenkumar, C. Muthukumaran, K. Tamilarasan, 3 Biotechnol. 7, 1 (2017)Google Scholar
  34. 34.
    J. Manisha, S. Mariya, S. Radha, S. Kiruthika, C. Muthukumaran, K. Tamilarasan, J. Mol. Catal. B Enzym. 128, 1 (2016)CrossRefGoogle Scholar
  35. 35.
    K.R. Aadil, A. Barapatre, S. Sahu, H. Jha, B.N. Tiwary, Int. J. Biol. Macromol. 67, 220 (2014)CrossRefPubMedGoogle Scholar
  36. 36.
    H. Nadji, P.N. Diouf, A. Benaboura, Y. Bedard, B. Riedl, T. Stevanovic, Bioresour. Technol. 100, 3585 (2009)CrossRefPubMedGoogle Scholar
  37. 37.
    A. Tejado, C. Pena, J. Labidi, J.M. Echeverria, I. Mondragon, Bioresour. Technol. 98, 1655 (2007)CrossRefPubMedGoogle Scholar
  38. 38.
    X.F. Sun, Z. Jing, P. Fowler, Y. Wu, M. Rajaratnam, Ind. Crops Prod. 33, 588 (2011)CrossRefGoogle Scholar
  39. 39.
    A. Kaushik, M. Singh, Carbohydr. Res. 346, 76 (2011)CrossRefPubMedGoogle Scholar
  40. 40.
    S.Y. Park, J.Y. Kim, H.J. Youn, J.W. Choi, Int. J. Biol. Macromol. 106, 793 (2018)CrossRefPubMedGoogle Scholar
  41. 41.
    H. El-Saied, A.A. Nada, Polym. Degrad. Stab. 40, 417 (1993)CrossRefGoogle Scholar
  42. 42.
    T.Q. Yuan, S.N. Sun, F. Xu, R.C. Sun, J. Agric. Food Chem. 59, 10604 (2011)CrossRefPubMedGoogle Scholar
  43. 43.
    Y. Cheng, P.X. Zhao, M.H. Alma, D.F. Sun, R. Li, J.X. Jiang, J. Anal. Appl. Pyrol. 122, 277 (2016)CrossRefGoogle Scholar
  44. 44.
    A. Liangliang, W. Guanhua, J. Hongyu, L. Cuiyun, S. Wenjie, S. Chuanling, Int. J. Biol. Macromol. 99, 274 (2017)CrossRefGoogle Scholar
  45. 45.
    P. Mousavioun, W.O.S. Doherty, Ind. Crops Prod. 31, 52 (2010)CrossRefGoogle Scholar
  46. 46.
    H. Sadeghifar, T. Wells, R.K. Le, F. Sadeghifar, J.S. Yuan, A. Jonas Ragauskas, A.C.S. Sustainable, Chem. Eng. 5, 580 (2016)Google Scholar
  47. 47.
    F. Xu, R.C. Sun, M.Z. Zhai, J.X. Sun, J.X. Jiang, G.J. Zhao, J. Appl. Polym. Sci. 108, 1158 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Namrata Kumar
    • 1
  • Soumya Vijayshankar
    • 1
  • Pranav Pasupathi
    • 1
  • Sundaramoorthy Nirmal Kumar
    • 1
  • Poonguzhali Elangovan
    • 1
  • Mathur Rajesh
    • 1
  • Krishnamurthi Tamilarasan
    • 1
  1. 1.Department of Chemical Engineering, School of BioengineeringSRM Institute of Science and TechnologyChennaiIndia

Personalised recommendations