Research on Chemical Intermediates

, Volume 44, Issue 7, pp 4295–4306 | Cite as

Tailoring magnetic mesoporous silica spheres-immobilized lipase for kinetic resolution of methyl 2-bromopropionate in a co-solvent system

  • Xiang-Hui Yan
  • Ping Xue


We report the facile synthesis of magnetic mesoporous silica spheres (MMSS) by combining the hydrothermal method and pyrolysis process. The mesostructure, morphology and magnetization of the as-synthesized MMSS can be tailored by adjusting the mass ratio of trimethyl benzene-to-Pluronic P123 triblock copolymer (EO20PO70EO20, MW = 5800; P123) and the amount of ferric acetylacetonate. Lipase from Candida cylindracea (CCL) immobilized by the resulting MMSS with well-defined microsphere structure, uniform mesopore size (~ 6.7 nm), large surface area (515 m2 g−1) and high saturated magnetization (8.7 emu g−1) was employed for kinetic resolution of methyl 2-bromopropionate in aqueous buffer/organic co-solvent; as a result, excellent catalytic performance was obtained with 18% chemical yield and 96.2% enantiomeric excess (eeS) of methyl (S)-2-bromopropionate. Moreover, the CCL/MMSS can be easily separated from the reaction system for repetition due to high magnetization, and exhibits a superior stability (83.2% retention) even after 8 cycles in terms of yield and eeS.

Graphical Abstract


Magnetic mesoporous silica spheres Immobilized lipase Kinetic resolution Co-solvent Methyl 2-bromopropionate 



This work was supported by the National Natural Science Foundation of China (21263020), the project of Key Laboratory of Powder Materials and Special Ceramics (1408) and the Research Project of Ningxia Colleges and Universities (NGY2015160).


  1. 1.
    B. Cambou, A.M. Klibanov, Appl. Biochem. Biotechnol. 9, 255 (1984)CrossRefGoogle Scholar
  2. 2.
    H.M.R. Gardimalla, D. Mandal, P.D. Stevens, M. Yen, Y. Gao, Chem. Commun. 37, 4432 (2005)CrossRefGoogle Scholar
  3. 3.
    S.Y. Torres, E. Ochoa, Y. Verdecia, F. Rebolledo, Tetrahedron 70, 4675 (2014)CrossRefGoogle Scholar
  4. 4.
    M. Merabet-Khelassi, L. Aribi-Zouioueche, O. Riant, Res. Chem. Intermed. 43, 5293 (2017)CrossRefGoogle Scholar
  5. 5.
    R. Guo, Y.X. Fan, X.L. Chen, Y.C. Shen, J. Agric. Food Chem. 61, 157 (2013)CrossRefPubMedGoogle Scholar
  6. 6.
    P. Vongvilai, M. Linder, M. Sakulsombat, M.S. Humble, P. Berglund, T. Brinck, O. Ramstrom, Angew. Chem. Int. Ed. 50, 6592 (2011)CrossRefGoogle Scholar
  7. 7.
    A. Kamal, M. Sandbhor, A.A. Shaik, V. Sravanthi, Tetrahedron Asymmetry 14, 2839 (2003)CrossRefGoogle Scholar
  8. 8.
    P. Xue, X.H. Yan, Z. Wang, Chin. Chem. Lett. 18, 929 (2007)CrossRefGoogle Scholar
  9. 9.
    Y.M. Zhang, J. Li, D.F. Han, H.D. Zhang, P. Liu, C. Li, Biochem. Biophys. Res. Commun. 365, 609 (2008)CrossRefPubMedGoogle Scholar
  10. 10.
    M.P. Kamble, S.D. Shinde, G.D. Yadav, J. Mol. Catal. B Enzym. 132, 61 (2016)CrossRefGoogle Scholar
  11. 11.
    P.L.A. Overbeeke, J.A. Jongejan, J. Mol. Catal. B Enzym. 21, 89 (2003)CrossRefGoogle Scholar
  12. 12.
    Y.Y. Cao, D. Deng, A.J. Sun, Y. Zhang, Y.F. Hu, Appl. Biochem. Biotechnol. 180, 1 (2016)CrossRefGoogle Scholar
  13. 13.
    J. Lei, J. Fan, C.Z. Yu, L.Y. Zhang, S.Y. Jiang, B. Tu, D.Y. Zhao, Micropor. Mesoporous Mater. 73, 121 (2004)CrossRefGoogle Scholar
  14. 14.
    G. Bayramoglu, A. Akbulut, V.C. Ozalp, M.Y. Arica, Chem. Eng. Res. Des. 95, 12 (2015)CrossRefGoogle Scholar
  15. 15.
    G. Bayramoglu, B. Hazer, B. Altintas, M.Y. Arica, Process Biochem. 46, 372 (2011)CrossRefGoogle Scholar
  16. 16.
    G. Bayramoglu, M.Y. Arica, Fiber Polym. 15, 2051 (2014)CrossRefGoogle Scholar
  17. 17.
    Y.F. Zhu, S. Kaskel, J.L. Shi, T. Wage, K.H. Pée, Chem. Mater. 19, 6408 (2007)CrossRefGoogle Scholar
  18. 18.
    M. Kalantari, M. Kazemeini, F. Tabandeh, A. Arpanaei, J. Mater. Chem. 22, 8385 (2012)CrossRefGoogle Scholar
  19. 19.
    E.J. Woo, H.S. Kwon, C.H. Lee, Chem. Eng. J. 274, 1 (2015)CrossRefGoogle Scholar
  20. 20.
    J.D. Cui, Y.X. Feng, S. Yue, Y.M. Zhao, L.B. Li, R.L. Liu, T. Lin, J. Chem. Technol. Biotechnol. 91, 1905 (2016)CrossRefGoogle Scholar
  21. 21.
    L.N. Wang, T. Qi, Y. Zhang, J.L. Chu, Micropor. Mesoporous Mater. 91, 156 (2006)CrossRefGoogle Scholar
  22. 22.
    W. Wu, X.H. Xiao, S.F. Zhang, T.C. Peng, J. Zhou, F. Ren, C.Z. Jiang, Nanoscale Res. Lett. 5, 1474 (2010)CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    D.Y. Zhao, Q.S. Huo, J.L. Feng, B.F. Chmelka, G.D. Stucky, J. Am. Chem. Soc. 120, 6024 (1998)CrossRefGoogle Scholar
  24. 24.
    Z.G. Jia, K.K. Peng, Y.H. Li, R.S. Zhu, Mater. Sci. Eng. B 176, 861 (2011)CrossRefGoogle Scholar
  25. 25.
    K.C. Badgujar, K.P. Dhake, B.M. Bhanage, Process Biochem. 48, 1335 (2013)CrossRefGoogle Scholar
  26. 26.
    S.H. Wu, Z.W. Guo, C.J. Sih, J. Am. Chem. Soc. 112, 1990 (1990)CrossRefGoogle Scholar
  27. 27.
    K. Pawinee, P. Suree, Indian J. Chem. 32B, 88 (1993)Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringNorth Minzu UniversityYinchuanChina
  2. 2.Key Laboratory of Energy Resources and Chemical EngineeringNingxia UniversityYinchuanChina

Personalised recommendations