Skip to main content
Log in

Sodium carboxymethyl starch-based highly conductive gel electrolyte for quasi-solid-state quantum dot-sensitized solar cells

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Liquid-junction quantum dot sensitized solar cells (QDSCs) have been facing a long stability issue due to the volatilization and leakage of liquid electrolytes. Solidification of liquid electrolytes was expected to solve the main challenge for the application of QDSCs. Herein, a novel gel electrolyte was developed by solidifying conventional polysulfide aqueous solution with CMS-Na (Sodium Carboxymethyl Starch) as gelator. Due to its superior water absorbing and holding capacity as well as dimensional porous networks, the obtained CMS-Na gel electrolyte exhibits high conductivity and beneficial ion transport. Meanwhile, CMS-Na gel electrolyte could form a passivation layer coated on the surface of QDs/TiO2 via its strong coordination of carboxylate groups on CMS-Na polymer chains with metal ions, sequentially suppressing the charge recombination between photoanode and electrolyte. As expected, the constructed quasi-solid-state QDSCs exhibited a photoelectric conversion efficiency of 6.32%, which is comparable to that of liquid-junction QDSCs. Notably, light-soaking stability of the resultant QDSCs is significantly improved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. P.V. Kamat, K. Tvrdy, D.R. Baker, J.G. Radich, Chem. Rev. 110, 6664–6688 (2010)

    Article  CAS  Google Scholar 

  2. G.H. Carey, A.L. Abdelhady, Z. Ning, S.M. Thon, O.M. Bakr, E.H. Sargent, Chem. Rev. 115, 12732–12763 (2015)

    Article  CAS  Google Scholar 

  3. A.J. Nozik, M.C. Beard, J.M. Luther, M. Law, R.J. Ellingson, J.C. Johnson, Chem. Rev. 110, 6873–6890 (2010)

    Article  CAS  Google Scholar 

  4. D.V. Talapin, J.-S. Lee, M.V. Kovalenko, E.V. Shevchenko, Chem. Rev. 110, 389–458 (2010)

    Article  CAS  Google Scholar 

  5. J.R. Swierk, T.E. Mallouk, Chem. Soc. Rev. 42, 2357–2387 (2013)

    Article  CAS  Google Scholar 

  6. S.E. Lohse, C.J. Murphy, J. Am. Chem. Soc. 134, 15607–15620 (2012)

    Article  CAS  Google Scholar 

  7. Z. Yang, C.-Y. Chen, P. Roy, H.-T. Chang, Chem. Commun. 47, 9561–9571 (2011)

    Article  CAS  Google Scholar 

  8. S. Jiao, J. Du, Z. Du, D. Long, W. Jiang, Z. Pan, Y. Li, X. Zhong, J. Phys. Chem. Lett. 8, 559–564 (2017)

    Article  CAS  Google Scholar 

  9. J. Yu, W. Wang, Z. Pan, J. Du, Z. Ren, W. Xue, X. Zhong, J. Mater. Chem. A 5, 14124–14133 (2017)

    Article  CAS  Google Scholar 

  10. V. Chakrapani, D. Baker, P.V. Kamat, J. Am. Chem. Soc. 133, 9607–9615 (2011)

    Article  CAS  Google Scholar 

  11. W. Feng, Y. Li, J. Du, W. Wang, X. Zhong, J. Mater. Chem. A 4, 1461–1468 (2016)

    Article  CAS  Google Scholar 

  12. H. Zhu, N. Song, T. Lian, J. Am. Chem. Soc. 135, 11461–11464 (2013)

    Article  CAS  Google Scholar 

  13. S. Ardo, G.J. Meyer, Chem. Soc. Rev. 38, 115–164 (2009)

    Article  CAS  Google Scholar 

  14. J. Wu, Z. Lan, S. Hao, P. Li, J. Lin, M. Huang, L. Fang, Y. Huang, Pure Appl. Chem. 80, 2241–2258 (2008)

    CAS  Google Scholar 

  15. A.F. Nogueira, C. Longo, M.-A. De Paoli, Coord. Chem. Rev. 248, 1455–1468 (2004)

    Article  CAS  Google Scholar 

  16. G. Wu, J. Huang, Y. Zang, J. He, G. Xu, J. Am. Chem. Soc. 139, 1360–1363 (2017)

    Article  CAS  Google Scholar 

  17. G. Xu, T. Yamada, K. Otsubo, S. Sakaida, H. Kitagawa, J. Am. Chem. Soc. 134, 16524–16527 (2012)

    Article  CAS  Google Scholar 

  18. M.-S. Yao, W.-X. Tang, G.-E. Wang, B. Nath, G. Xu, Adv. Mater. 28, 5229–5234 (2016)

    Article  CAS  Google Scholar 

  19. W. Feng, L. Zhao, J. Du, Y. Li, X. Zhong, J. Mater. Chem. A 4, 14849–14856 (2016)

    Article  CAS  Google Scholar 

  20. P. Wang, S.M. Zakeeruddin, P. Comte, I. Exnar, M. Grätzel, J. Am. Chem. Soc. 125, 1166–1167 (2003)

    Article  CAS  Google Scholar 

  21. J. Wu, Z. Lan, J. Lin, M. Huang, Y. Huang, L. Fan, G. Luo, Chem. Rev. 115, 2136–2173 (2015)

    Article  CAS  Google Scholar 

  22. J. Du, X. Meng, K. Zhao, Y. Li, X. Zhong, J. Mater. Chem. A 3, 17091–17097 (2015)

    Article  CAS  Google Scholar 

  23. P.P. Boix, G. Larramona, A. Jacob, B. Delatouche, I. Mora-Seró, J. Bisquert, J. Phys. Chem. C 116, 1579–1587 (2012)

    Article  CAS  Google Scholar 

  24. E. Raphael, D.H. Jara, M.A. Schiavon, RSC Adv. 7, 6492–6500 (2017)

    Article  CAS  Google Scholar 

  25. O.A. Ileperuma, Mater. Technol. 28, 65–70 (2013)

    Article  CAS  Google Scholar 

  26. Z. Yu, D. Qin, Y. Zhang, H. Sun, Y. Luo, Q. Meng, D. Li, Energy Environ. Sci. 4, 1298–1305 (2011)

    Article  CAS  Google Scholar 

  27. X. Zhang, H. Liu, T. Taguchi, Q. Meng, O. Sato, A. Fujishima, Sol. Energy Mater. Sol. Cells 81, 197–203 (2004)

    Article  CAS  Google Scholar 

  28. V.P.S. Perera, K. Tennakone, Sol. Energy Mater. Sol. Cells 79, 249–255 (2003)

    Article  CAS  Google Scholar 

  29. S. Tan, J. Zhai, B. Xue, M. Wan, Q. Meng, Y. Li, L. Jiang, D. Zhu, Langmuir 20, 2934–2937 (2004)

    Article  CAS  Google Scholar 

  30. Z. Lan, J. Wu, D. Wang, S. Hao, J. Lin, Y. Huang, Sol. Energy 81, 117–122 (2007)

    Article  CAS  Google Scholar 

  31. J. Briscoe, D.E. Gallardo, S. Hatch, V. Lesnyak, N. Gaponik, S. Dunn, J. Mater. Chem. 21, 2517–2523 (2011)

    Article  CAS  Google Scholar 

  32. H.-Y. Chen, L. Lin, X.-Y. Yu, K.-Q. Qiu, X.-Y. Lü, D.-B. Kuang, C.-Y. Su, Electrochim. Acta 92, 117–123 (2013)

    Article  CAS  Google Scholar 

  33. K. Meng, K.R. Thampi, A.C.S. Appl, Mater. Interfaces 6, 20768–20775 (2014)

    Article  CAS  Google Scholar 

  34. T. Spychaj, K. Wilpiszewska, M. Zdanowicz, Starch/Stärke 65, 22–23 (2013)

    Article  CAS  Google Scholar 

  35. B.S. Kim, S.-T. Lim, Carbohydr. Polym. 39, 217–223 (1999)

    Article  CAS  Google Scholar 

  36. D.A. Silva, R.C.M. de Paula, J.P.A. Feitosa, A.C.F. de Brito, J.S. Maciel, H.C.B. Paula, Carbohydr. Polym. 58, 163–171 (2004)

    Article  CAS  Google Scholar 

  37. H. Nie, M. Liu, F. Zhan, M. Guo, Carbohydr. Polym. 58, 185–189 (2004)

    Article  CAS  Google Scholar 

  38. X. Zhong, Y. Feng, Y. Zhang, J. Phys. Chem. C 111, 526–531 (2007)

    Article  CAS  Google Scholar 

  39. H. Zhang, K. Cheng, Y. Hou, Z. Fang, Z. Pan, W. Wu, J. Hua, X. Zhong, Chem. Commun. 48, 11235–11237 (2012)

    Article  CAS  Google Scholar 

  40. W. Li, X. Zhong, J. Phys. Chem. Lett. 6, 796–806 (2015)

    Article  CAS  Google Scholar 

  41. Z. Du, H. Zhang, H. Bao, X. Zhong, J. Mater. Chem. A 2, 13033–13040 (2014)

    Article  CAS  Google Scholar 

  42. Z. Ren, J. Wang, Z. Pan, K. Zhao, H. Zhang, Y. Li, Y. Zhao, I. Mora-Seró, J. Bisquert, X. Zhong, Chem. Mater. 27, 8398–8405 (2015)

    Article  CAS  Google Scholar 

  43. K. Zhao, H. Yu, H. Zhang, X. Zhong, J. Phys. Chem. C 118, 5683–5690 (2014)

    Article  CAS  Google Scholar 

  44. H. Kataoka, Y. Saito, Y. Uetani, S. Murata, K. Kii, J. Phys. Chem. B 106, 12084–12087 (2002)

    Article  CAS  Google Scholar 

  45. S.A.Z. Arrhenius, Phys. Chem. 4, 226–242 (1889)

    Google Scholar 

  46. G.Y. Gu, S. Bouvier, C. Wu, R. Laura, M. Rzeznik, K.M. Arbraham, Electrochim. Acta 45, 3127–3139 (2000)

    Article  CAS  Google Scholar 

  47. H. Vogel, Phys. Z. 22, 645–646 (1921)

    CAS  Google Scholar 

  48. G. Jiang, Z. Pan, Z. Ren, J. Du, C. Yang, W. Wang, X. Zhong, J. Mater. Chem. A 4, 11416–11421 (2016)

    Article  CAS  Google Scholar 

  49. V. González-Pedro, X. Xu, I. Mora-Seró, J. Bisquert, ACS Nano 4, 5783–5790 (2010)

    Article  Google Scholar 

  50. F. Fabregat-Santiago, G. Garcia-Belmonte, I. Mora-Seró, J. Bisquert, Phys. Chem. Chem. Phys. 13, 9083–9118 (2011)

    Article  CAS  Google Scholar 

  51. D. Li, L. Cheng, Y. Zhang, Q. Zhang, X. Huang, Y. Luo, Q. Meng, Sol. Energy Mater. Sol. Cells 120, 454–461 (2014)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the National Natural Science Foundation of China (No. 21771063) and the Fundamental Research Funds for the Central Universities in China for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Li.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 36 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Feng, W., Wang, W. et al. Sodium carboxymethyl starch-based highly conductive gel electrolyte for quasi-solid-state quantum dot-sensitized solar cells. Res Chem Intermed 44, 1161–1172 (2018). https://doi.org/10.1007/s11164-017-3159-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-017-3159-1

Keywords

Navigation