Skip to main content
Log in

Preparation of ZnFe2O4 nanoparticles by mechanical alloying and annealing for sensitizing C-modified TiO2 and acquirement of efficient photocatalyst

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

ZnFe2O4 nanoparticles sensitized by C-modified TiO2 hybrids (ZnFe2O4–TiO2/C) were successfully prepared by a feasible method. The ZnFe2O4 nanoparticles were prepared by mechanical alloying and annealing. The residual organic compounds in the synthetic process of TiO2 were selected as the carbon source. The as-prepared composites were characterized by X-ray diffraction, Raman spectroscopy, X-ray fluorescence, transmission electron microscopy, X-ray photoelectron spectroscopy, ultraviolet–visible light diffuse reflectance spectroscopy (UV–Vis) and N2 adsorption–desorption analysis. The photocatalytic activity of the photocatalysts was measured by degradation of methyl orange under ultraviolet (UV) light and simulated solar irradiation, respectively. The results show that the carbon did not enter the TiO2 lattice but adhered to the surface of TiO2. The photocatalytic activity of the as-prepared C-modified TiO2 (TiO2/C) improved both under UV and simulated solar light irradiation, but the improvement was not dramatic. Introduction of ZnFe2O4 into the TiO2/C could enhance the absorption spectrum range. The ZnFe2O4–TiO2/C hybrids exhibited a higher photocatalytic activity both than that of the pure TiO2 and TiO2/C under either UV or simulated solar light irradiation. The complex synergistic effect plays an important role in improving the photocatalytic performance of ZnFe2O4–TiO2/C composites. The optimum photocatalytic performance was obtained from the ZnFe2O4(0.8 wt%)–TiO2/C sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. M. Liu, R. Inde, M. Nishikawa, X.Q. Qiu, D. Atarashi, E. Sakai, Y. Nosaka, K. Hashimoto, M. Miyauchi, Enhanced photoactivity with nanocluster-grafted titanium dioxide photocatalysts. ACS Nano 8, 7229–7238 (2014)

    Article  CAS  Google Scholar 

  2. Q. Xu, J. Feng, L. Li, Q. Xiao, J. Wang, Hollow ZnFe2O4/TiO2 composites: high-performance and recyclable visible-light photocatalyst. J. Alloys Compd. 641, 110–118 (2015)

    Article  CAS  Google Scholar 

  3. Y. Yao, J. Qin, H. Chen, F. Wei, X. Liu, J. Wang, S. Wang, One-pot approach for synthesis of N-doped TiO2/ZnFe2O4 hybrid as an efficient photocatalyst for degradation of aqueous organic pollutants. J. Hazard. Mater. 291, 28–37 (2015)

    Article  CAS  Google Scholar 

  4. G. Xiao, H. Su, T. Tan, Synthesis of core–shell bioaffinity chitosan-TiO2 composite and its environmental applications. J. Hazard. Mater. 283, 888–896 (2015)

    Article  CAS  Google Scholar 

  5. K. Nagaveni, M.S. Hegde, N. Ravishankar, G.N. Subbanna, G. Madras, Synthesis and structure of nanocrystalline TiO2 with lower band gap showing high photocatalytic activity. Langmuir 20, 2900–2907 (2004)

    Article  CAS  Google Scholar 

  6. S.K. Parayil, H.S. Kibombo, C. Wu, R. Peng, J. Baltrusaitis, R.T. Koodali, Enhanced photocatalytic water splitting activity of carbon-modified TiO2 composite materials synthesized by a green synthetic approach. Int. J. Hydrog. Energy 37, 8257–8267 (2012)

    Article  CAS  Google Scholar 

  7. Y. Zhang, P. Zhang, Y. Huo, D. Zhang, G. Li, H. Li, Ethanol supercritical route for fabricating bimodal carbon modified mesoporous TiO2 with enhanced photocatalytic capability in degrading phenol. Appl. Catal. B Environ. 115–116, 236–244 (2012)

    Article  Google Scholar 

  8. S.D. Kulkarni, S. Kumbar, S.G. Menon, K.S. Choudhari, C. Santhosh, Magnetically separable core–shell ZnFe2O4@ZnO nanoparticles for visible light photodegradation of methyl orange. Mater. Res. Bull. 77, 70–77 (2016)

    Article  CAS  Google Scholar 

  9. R. Shao, L. Sun, L. Tang, Z. Chen, Preparation and characterization of magnetic core–shell ZnFe2O4@ZnO nanoparticles and their application for the photodegradation of methylene blue. Chem. Eng. J. 217, 185–191 (2013)

    Article  CAS  Google Scholar 

  10. Z. Yuan, L. Zhang, Synthesis, characterization and photocatalyticactivity of ZnFe2O4/TiO2 nanocomposite. J. Mater. Chem. 11, 1265–1268 (2001)

    Article  CAS  Google Scholar 

  11. M. Wang, L. Sun, J. Cai, P. Huang, Y. Su, C. Lin, A facile hydrothermal deposition of ZnFe2O4 nanoparticles on TiO2 nanotube arrays for enhanced visible light photocatalytic activity. J. Mater. Chem. A 1, 12082–12087 (2013)

    Article  CAS  Google Scholar 

  12. S.H. Yu, T. Fujino, M. Yoshimura, Hydrothermal synthesis of ZnFe2O4 ultrafine particles with high magnetization. J. Magn. Magn. Mater. 256, 420–424 (2003)

    Article  CAS  Google Scholar 

  13. L. Wang, Q. Zhou, F. Li, Ionic disorder and yaffet–kittel angle in nanoparticles of ZnFe2O4 prepared by sol-gel method. Phys. Stat. Sol. (b) 241, 377–382 (2004)

    Article  CAS  Google Scholar 

  14. H. Lee, J.C. Jung, H. Kim, Y.M. Chung, T.J. Kim, S.J. Lee, S.H. Oh, Y.S. Kim, I.K. Song, Preparation of ZnFe2O4 catalysts by a co-precipitation method using aqueous buffer solution and their catalytic activity for oxidative dehydrogenation of n-butene to 1, 3-butadiene. Catal. Lett. 122, 281–286 (2008)

    Article  CAS  Google Scholar 

  15. Y. Zhou, S. Xi, C. Sun, H. Wu, Facile synthesis of Cu2ZnSnS4 powders by mechanical alloying and annealing. Mater. Lett. 169, 176–179 (2016)

    Article  CAS  Google Scholar 

  16. T.F. Marinca, B.V. Neamţu, F. Popa, V.F. Tarţa, P. Pascuta, A.F. Takacs, I. Chicinas, Synthesis and characterization of the NiFe2O4/Ni3Fe nanocomposite powder and compacts obtained by mechanical milling and spark plasma sintering. Appl. Surf. Sci. 285P, 2–9 (2013)

    Article  Google Scholar 

  17. T. Marinca, I. Chicinas, O. Isnard, V. Pop, Structural and magnetic properties of nanocrystalline ZnFe2O4 powder synthesized by reactive ball milling. Optoelectron. Adv. Mater. 5, 39–43 (2011)

    CAS  Google Scholar 

  18. D.H. Wang, L. Jia, X.L. Wu, L.Q. Lu, A.W. Xu, One-step hydrothermal synthesis of N-doped TiO2/C nanocomposites with high visible light photocatalytic activity. Nanoscale 4, 576–584 (2012)

    Article  CAS  Google Scholar 

  19. A. Najafian, R. Rahimi, S. Zargari, M.M. Moghaddas, A. Nazemi, Synthesis and photocatalytic activity of V-doped mesoporous TiO2 photosensitized with porphyrin supported by SBA-15. Res. Chem. Intermed. 42, 3441–3458 (2016)

    Article  CAS  Google Scholar 

  20. S. Cao, M. Shi, H. Wang, F. Yu, X. Weng, Y. Liu, Z. Wu, A two-stage Ce/TiO2–Cu/CeO2 catalyst with separated catalytic functions for deep catalytic combustion of CH2Cl2. Chem. Eng. J. 290, 147–153 (2016)

    Article  CAS  Google Scholar 

  21. A. Eshaghi, S. Hayeripour, A. Eshaghi, Photocatalytic decolorization of reactive red 198 dye by a TiO2—activated carbon nano-composite derived from the sol–gel method. Res. Chem. Intermed. 42, 2461–2471 (2016)

    Article  CAS  Google Scholar 

  22. P. Xiong, L. Wang, X. Sun, B. Xu, X. Wang, Ternary titania-cobalt ferrite-polyaniline nanocomposite: a magnetically recyclable hybrid for adsorption and photodegradation of dyes under visible light. Ind. Eng. Chem. Res. 52, 10105–10113 (2013)

    Article  CAS  Google Scholar 

  23. Y. Liu, W. Zhang, L. Bian, W. Liang, J. Zhang, B. Yu, Structure, morphology and photocatalytic activity of Cu2O/Pt/TiO2 three-layered nanocomposite films. Mater. Sci. Semicond. Process. 21, 26–32 (2014)

    Article  Google Scholar 

  24. J. Zhang, J. Song, H. Niu, C. Mao, S. Zhang, Y. Shen, ZnFe2O4 nanoparticles: synthesis, characterization, and enhanced gas sensing property for acetone. Sensor. Actuat. B Chem. 221, 55–62 (2015)

    Article  CAS  Google Scholar 

  25. I. Ismail, M. Hashim, K.A. Matori, R. Alias, J. Hassan, Milling time and BPR dependence on permeability and losses of Ni0.5Zn0.5Fe2O4 synthesized via mechanical alloying process. J. Magn. Magn. Mater. 323, 1470–1476 (2011)

    Article  CAS  Google Scholar 

  26. S. Bid, S.K. Pradhan, Preparation of zinc ferrite by high-energy ball-milling and microstructure characterization by Rietveld’s analysis. Mater. Chem. Phys. 82, 27–37 (2003)

    Article  CAS  Google Scholar 

  27. L. Wu, T. Wu, M. Mao, M. Zhang, T. Wang, Electrospinning synthesis of Ni°, Fe° codoped ultrafine-ZnFe2O4/C nanofibers and their properties for lithium ion storage. Electrochim. Acta 194, 357–366 (2016)

    Article  CAS  Google Scholar 

  28. A.P. Grosvenor, B.A. Kobe, M.C. Biesinger, N.S. McIntyre, Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds. Surf. Interface Anal. 36, 1564–1574 (2004)

    Article  CAS  Google Scholar 

  29. T. Yamashita, P. Hayes, Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials. Appl. Surf. Sci. 254, 2441–2449 (2008)

    Article  CAS  Google Scholar 

  30. C.S. Luo, H. Luo, X.Y. He, Research on 304,321,316 lect. Stainless steel corrosion under the calcinating gas atmosphere of ammonium paramolybdate. Adv. Mater. Res. 602–604, 421–425 (2012)

    Article  Google Scholar 

  31. H. Lin, H. Zhang, L.W. Hou, Degradation of C. I. Acid orange 7 in aqueous solution by a novel electro/Fe3O4/PDS process. J. Hazard. Mater. 276C, 182–191 (2014)

    Article  Google Scholar 

  32. L. Han, X. Zhou, L. Wan, Y. Deng, S. Zhan, Synthesis of ZnFe2O4 nanoplates by succinic acid-assisted hydrothermal route and their photocatalytic degradation of rhodamine B under visible light. J. Environ. Chem. Eng. 2, 123–130 (2014)

    Article  CAS  Google Scholar 

  33. Z. Lei, Y. Xiao, L. Dang, W. You, G. Hu, J. Zhang, Nickel-catalyzed fabrication of SiO2, TiO2/graphitized carbon, and the resultant graphitized carbon with periodically macroporous structure. Chem. Mater. 19, 477–484 (2007)

    Article  CAS  Google Scholar 

  34. H.J. Yun, H. Lee, J.B. Joo, N.D. Kim, M.Y. Kang, J.Y. Yun, Facile preparation of high performance visible light sensitive photo-catalysts. Appl. Catal. B Environ. 94, 241–247 (2010)

    Article  CAS  Google Scholar 

  35. F. Jia, Z. Yao, Z. Jiang, C. Li, Preparation of carbon coated TiO2 nanotubes film and its catalytic application for H2 generation. Catal. Commun. 12, 497–501 (2011)

    Article  CAS  Google Scholar 

  36. B. Xin, P. Wang, D. Ding, J. Liu, Z. Ren, H. Fu, Effect of surface species on Cu–TiO2 photocatalytic activity. Appl. Surf. Sci. 254, 2569–2574 (2008)

    Article  CAS  Google Scholar 

  37. L. Zhao, X. Chen, X. Wang, Y. Zhang, W. Wei, Y. Sun, M. Antonietti, M.M. Titirici, One-step solvothermal synthesis of a carbon@TiO2 dyade structure effectively promoting visible-light photocatalysis. Adv. Mater. 22, 3317–3321 (2010)

    Article  CAS  Google Scholar 

  38. S. Wu, P. Wang, Y. Cai, D. Liang, Y. Ye, Z. Tian, J. Liu, C. Liang, Reduced graphene oxide anchored magnetic ZnFe2O4 nanoparticles with enhanced visible-light photocatalytic activity. RSC Adv. 5, 9069–9074 (2015)

    Article  CAS  Google Scholar 

  39. H. Hiura, T.W. Ebbesen, K. Tanigaki, Opening and purification of carbon nanotubes in high yields. Adv. Mater. 7, 275–276 (1995)

    Article  CAS  Google Scholar 

  40. S. Hou, S. Su, M.L. Kasner, P. Shah, K. Patel, C.J. Madarang, Formation of highly stable dispersions of silane-functionalized reduced graphene oxide. Chem. Phys. Lett. 501, 68–74 (2010)

    Article  CAS  Google Scholar 

  41. H. Irie, Y. Watanabe, K. Hashimoto, Carbon-doped anatase TiO2 powders as a visible-light sensitive photocatalyst. Chem. Lett. 32, 772–773 (2003)

    Article  CAS  Google Scholar 

  42. J. Lee, S. Han, J. Kim, Y. Lee, A. Ko, B. Roh, I. Hwang, K. Park, TiO2@carbon core–shell nanostructure supports for platinum and their use for methanol electrooxidation. Carbon 48, 2290–2296 (2010)

    Article  CAS  Google Scholar 

  43. M. Mohameda, W.N.W. Salleh, J. Jaafar, Z. Hir, M. Rosmid, M.A. Mutalib, A. Ismail, M. Tanemuraea, Regenerated cellulose membrane as bio-template for in situ growthof visible-light driven C-modified mesoporous titania. Carbohydr. Polym. 146, 166–173 (2016)

    Article  Google Scholar 

  44. M.A. Nawi, I. Nawawi, Preparation and characterization of TiO2 coated with a thin carbon layer for enhanced photocatalytic activity under fluorescent lamp and solar light irradiations. App. Catal. A Gen. 453, 80–91 (2013)

    Article  CAS  Google Scholar 

  45. J. Yu, G. Dai, Q. Xiang, M. Jaroniec, Fabrication and enhanced visible-light photocatalytic activity of carbon self-doped TiO2 sheets with exposed 001 facets. J. Mater. Chem. 21, 1049–1057 (2011)

    Article  CAS  Google Scholar 

  46. X. Shao, W. Lu, R. Zhang, F. Pan, Enhanced photocatalytic activity of TiO2–C hybrid aerogels for methylene blue degradation. Sci. Rep. 3, 3018 (2013)

    Google Scholar 

  47. Z.L. Zhang, M. Wan, Y.L. Mao, Enhanced photovoltaic effect of TiO2-based composite ZnFe2O4/TiO2. J. Photochem. Photobiol. A 233, 15–19 (2012)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The project was supported by the National Natural Science Foundation of China (No. 51271143).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shengqi Xi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Y., Guo, C., Xi, S. et al. Preparation of ZnFe2O4 nanoparticles by mechanical alloying and annealing for sensitizing C-modified TiO2 and acquirement of efficient photocatalyst. Res Chem Intermed 43, 1495–1512 (2017). https://doi.org/10.1007/s11164-016-2711-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-016-2711-8

Keywords

Navigation