Skip to main content
Log in

Fluorogenic ferrocenyl Schiff base for Zn2+ and Cd2+ detection

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

A novel sensor based on acetylferrocene-containing Schiff base (ASB) was synthesized by reaction of α-chloroacetylferrocene and N-(salicylidene)-l-valinmethylester. The structure of the compound was characterized by using elemental analysis and Fourier-transform infrared (FT-IR), 1H nuclear magnetic resonance (NMR), and 13C NMR spectroscopy. Its metal-cation-sensing properties were investigated spectrofluorometrically. ASB served as selective chemosensor for Zn2+ and Cd2+ towards alkali, alkaline-earth, and various heavy-metal ions. It showed significant fluorescence enhancement for Zn2+ and Cd2+ ions, stemming from C=N isomerization and chelation-enhanced fluorescence. The binding modes of the complexes were determined to have 1:1 complexation stoichiometry, and the binding constants were calculated as (6.93 ± 0.25) × 106 M−1 for ASB·Zn 2+ and (7.49 ± 0.18) × 105 M−1 for ASB·Cd 2+ using the nonlinear curve-fitting method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 3
Fig. 7

Similar content being viewed by others

Notes

  1. The CHEF is defined as I max/I 0, where I max corresponds to the maximum emission intensity of the receptor–metal complex, while I 0 is the maximum emission intensity of the free receptor. For recent and relevant examples of heavy- and transition-metal cation (HTM) chemosensors based on chelation-enhanced fluorescence (CHEF).

  2. Guidance for industry Q2B validation of analytical procedures: methodology, Nov 1996.

References

  1. M. Kaur, P. Kaur, V. Dhuna, S. Singh, K. Singh, Dalton Trans. 43, 5707–5712 (2014)

    Article  CAS  Google Scholar 

  2. S. Maiti, Z. Aydin, Y. Zhang, M. Guo, Dalton Trans. 44, 8942–8949 (2015)

    Article  CAS  Google Scholar 

  3. B. Sen, M. Mukherjee, S. Banerjee, S. Pal, P. Chattopadhyay, Dalton Trans. 44, 8708–8717 (2015)

    Article  CAS  Google Scholar 

  4. S. Anbu, R. Ravishankaran, M.F.C.G. Da Silva, A.A. Karande, A.J.L. Pombeiro, Inorg. Chem. 53, 6655–6664 (2014)

    Article  CAS  Google Scholar 

  5. V.K. Gupta, N. Mergu, L.K. Kumawat, A.K. Singh, Sens. Actuators B 207, 216–223 (2015)

    Article  CAS  Google Scholar 

  6. J. Wang, W. Lin, W. Li, Chem. Eur. J. 18, 13629–13632 (2012)

    Article  CAS  Google Scholar 

  7. S.K. Lee, M.G. Choi, J. Choi, S.K. Chang, Sens. Actuators B 207, 303–307 (2015)

    Article  CAS  Google Scholar 

  8. Q. Zhao, R. Li, S. Xing, X. Liu, T. Hu, X. Bu, Inorg. Chem. 50, 10041–10046 (2011)

    Article  CAS  Google Scholar 

  9. Z. Liu, C. Zhang, W. He, Z. Yang, X. Gao, Z. Guo, Chem. Commun. 46, 6138–6140 (2010)

    Article  CAS  Google Scholar 

  10. V.K. Gupta, M.R. Ganjali, P. Norouzi, H. Khani, A. Nayak, S. Agarwal, Crit. Rev. Anal. Chem. 41, 282–313 (2011)

    Article  CAS  Google Scholar 

  11. F. Xiao, J. Shen, J. Qu, S. Jing, D.R. Zhu, Inorg. Chem. Commun. 35, 69–71 (2013)

    Article  CAS  Google Scholar 

  12. J.T. Hou, B.Y. Liu, K. Li, K.K. Yu, M.B. Wu, X.Q. Yu, Talanta 116, 434–440 (2013)

    Article  CAS  Google Scholar 

  13. Y. Ma, F. Wang, S. Kambam, X. Chen, Sens. Actuators B 188, 1116–1122 (2013)

    Article  CAS  Google Scholar 

  14. K. Dutta, R.C. Deka, D.K. Das, Spectrochim. Acta A 124, 124–129 (2014)

    Article  CAS  Google Scholar 

  15. R. Borthakur, U. Thapa, M. Asthana, S. Mitra, K. Ismail, R.A. Lal, J. Photochem. Photobiol. A Chem. 301, 6–13 (2015)

    Article  CAS  Google Scholar 

  16. B. Kashyap, K. Dutta, D.K. Das, P. Phukan, J. Fluoresc. 24, 975–981 (2014)

    Article  CAS  Google Scholar 

  17. H. Ye, F. Ge, Y.M. Zhou, J.T. Liu, B.X. Zhao, Spectrochim. Acta A 112, 132–138 (2013)

    Article  CAS  Google Scholar 

  18. J.H. Hu, J.B. Li, J. Qi, Y. Sun, Sens. Actuators B 208, 581–587 (2015)

    Article  Google Scholar 

  19. R. Pandey, R.K. Gupta, M. Shahid, B. Maiti, A. Misra, D.S. Pandey, Inorg. Chem. 51, 298–311 (2011)

    Article  Google Scholar 

  20. V.K. Gupta, A.K. Singh, L.K. Kumawat, Sens. Actuators B 195, 98–108 (2014)

    Article  CAS  Google Scholar 

  21. L. Wang, H. Li, D. Cao, Sens. Actuators B 181, 749–755 (2013)

    Article  CAS  Google Scholar 

  22. Y.S. Mi, Z. Cao, Y.T. Chen, Q.F. Xie, Y.Y. Xu, Y.F. Luo, J.J. Shic, J.N. Xiang, Analyst 138, 5274–5280 (2013)

    Article  CAS  Google Scholar 

  23. C.K. Kumar, R. Trivedi, L. Giribabu, S. Niveditha, K. Bhanuprakash, B. Sridhar, J. Organomet. Chem. 780, 20–29 (2015)

    Article  Google Scholar 

  24. P. Chinapang, V. Ruangpornvisuti, M. Sukwattanasinitt, P. Rashatasakhon, Dyes Pigments 112, 236–238 (2015)

    Article  CAS  Google Scholar 

  25. J. Shen, T. Liu, Y. Li, W. Ji, S. Jing, D.R. Zhu, G.F. Guan, Inorg. Chem. Commun. 44, 6–9 (2014)

    Article  CAS  Google Scholar 

  26. S.J. Ponniah, S.K. Barik, A. Thakur, R. Ganesamoorthi, S. Ghosh, Organometallics 33, 3096–3107 (2014)

    Article  Google Scholar 

  27. V. Uahengo, B. Xiong, P. Zhao, Y. Zhang, P. Cai, K. Hu, G. Cheng, Sens. Actuators B 190, 937–945 (2014)

    Article  CAS  Google Scholar 

  28. L. Zhu, D. Zhang, D. Qu, Q. Wang, X. Ma, H. Yian, Chem. Commun. 46, 2587–2589 (2010)

    Article  CAS  Google Scholar 

  29. G. Warncke, U. Böhme, B. Günther, M. Kronstein, Polyhedron 47, 46–52 (2012)

    Article  CAS  Google Scholar 

  30. O. Dogan, V. Senol, S. Zeytinci, H. Koyuncu, A. Bulut, J. Organomet. Chem. 690, 430–434 (2005)

    Article  CAS  Google Scholar 

  31. M.L. Sundararajan, T. Jeyakumar, J. Anandakumaran, B.K. Selvan, Spectrochim. Acta A 131, 82–93 (2014)

    Article  CAS  Google Scholar 

  32. J. Müller, G. Kehr, R. Fröhlich, G. Erker, Eur. J. Inorg. Chem. 2005, 2836–2841 (2005)

    Article  Google Scholar 

  33. D. Tomczyk, L. Nowak, W. Bukowski, K. Bester, P. Urbaniak, G. Andrijewski, B. Olejniczak, Electrochim. Acta 121, 64–77 (2014)

    Article  CAS  Google Scholar 

  34. J. Wu, W. Liu, J. Ge, H. Zhang, P. Wang, Chem. Soc. Rev. 40, 3483–3495 (2011)

    Article  CAS  Google Scholar 

  35. Y.J. Lee, C. Lim, H. Suh, E.J. Song, C. Kim, Sens. Actuators B 201, 535–544 (2014)

    Article  CAS  Google Scholar 

  36. L. Wang, W. Qin, X. Tang, W. Dou, W. Liu. J. Phys. Chem. A 115, 1609–1616 (2011)

    Article  CAS  Google Scholar 

  37. X. Liu, N. Zhang, J. Zhou, T. Chang, C. Fangab, D. Shangguan, Analyst 138, 901–906 (2013)

    Article  CAS  Google Scholar 

  38. H. Bingol, E. Kocabas, E. Zor, A. Coskun, Talanta 82, 1538–1542 (2010)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Scientific Research Projects (BAP 13201019) of Selcuk University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mukerrem Findik.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Findik, M., Ucar, A., Bingol, H. et al. Fluorogenic ferrocenyl Schiff base for Zn2+ and Cd2+ detection. Res Chem Intermed 43, 401–412 (2017). https://doi.org/10.1007/s11164-016-2630-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-016-2630-8

Keywords

Navigation