Skip to main content
Log in

The anodic reactivity of 4,4′-dimethoxychalcone: a synthetic and mechanistic investigation

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

The anodic oxidation of the 4,4′-dimethoxychalcone (DMC) was investigated by different electrochemical methods at a platinum working electrode and in acetonitrile as a solvent. The DMC exhibited a single irreversible anodic peak around 1.6 V versus Ag/AgCl. On the time scale of cyclic voltammetry experiments, the highly reactive radical cation issued from the first electron transfer underwent a second order rate-limiting reaction. The potential imposed electrolyses of DMC led to the formation of a semi-conducting oligomer with 40 % yield. Using different physico-chemicals methods, the structural study confirmed the formation of an o-phenylenevinylene oligomer. The values of the corresponding optical and electrochemical band gaps were calculated to be 3.15 and 2.86 eV, respectively. Finally, a mechanism for the DMC electro-oligomerization was proposed on the basis of the obtained results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Scheme 2
Scheme 3

Similar content being viewed by others

References

  1. A.H. Said, F. Matoussi, C. Amatore, J.-N. Verpeaux, J. Electroanal. Chem. (1999). doi:10.1016/s0022-0728(98)00477-x

    Google Scholar 

  2. A.H. Said, F. Matoussi, C. Amatore, L. Thouin, C. Pebay, J.-N. Verpeaux, J. Electroanal. Chem (2002). doi:10.1016/s0022-0728(02)01226-3

    Google Scholar 

  3. A.H. Said, C. Dridi, S. Roudesli, F. Matoussi, Eur. Polym. J (2000). doi:10.1016/s0014-3057(99)00142-1

    Google Scholar 

  4. S. Bergaoui, A.H. Said, F. Matoussi, Eur. Polym. J. (2002). doi:10.1016/s0014-3057(02)00075-7

    Google Scholar 

  5. S. Bergaoui, A.H. Said, S. Roudesli, F. Matoussi, Electrochim. Acta (2006). doi:10.1016/j.electacta.2005.12.031

    Google Scholar 

  6. S. Ben Amor, A.H. Said, M. Chemek, S. Ayachi, F. Massuyeau, J. Wéry, K. Alimi, S. Roudesli, J. Mol. Struct. (2013). doi:10.1016/j.molstruc.2012.03.050

    Google Scholar 

  7. S. Ayachi, S. Bergaoui, I.B. Khalifa, A.H. Said, M. Chemek, F. Massuyeau, J. Wéry, E. Faulques, K. Alimi, Synthetic Met (2013). doi:10.1016/j.synthmet.2012.12.026

    Google Scholar 

  8. I.B. Khalifa, S. Bargaoui, A.H. Said, S. Ayachi, B. Zaidi, J. Wéry, K. Alimi, J. Mol. Struct (2011). doi:10.1016/j.molstruc.2011.04.029

    Google Scholar 

  9. B. Delavaux-Nicot, J. Maynadie, D. Lavabre, S. Fery-Forgues, J. Organomet. Chem. (2007). doi:10.1016/j.jorganchem.2006.10.045

    Google Scholar 

  10. B. Delavaux-Nicot, J. Maynadie, D. Lavabre, S. Fery-Forgues, J. Organomet. Chem. (2007). doi:10.1016/j.jorganchem.2007.03.044

    Google Scholar 

  11. J. Maynadie, B. Delavaux-Nicot, D. Lavabre, S. Fery-Forgues, J. Organomet. Chem. (2006). doi:10.1016/j.jorganchem.2005.11.021

    Google Scholar 

  12. S. Shettigar, K. Chandrasekharan, G. Umesh, B.K. Sarojini, B. Narayana, Polymer (2006). doi:10.1016/j.polymer.2006.03.062

    Google Scholar 

  13. E.D. D’silva, G.K. Podagatlapalli, S.V. Rao, S.M. Dharmaprakash, Mater. Res. Bull (2012). doi:10.1016/j.materresbull.2012.06.063

    Google Scholar 

  14. Z. Xu, W. Yang, C. Dong, Bioorg. Med. Chem. Lett. (2005). doi:10.1016/j.bmcl.2005.06.014

    Google Scholar 

  15. J. Indira, P.P. Karata, B.K. Sarojini, J. Cryst. Growth (2002). doi:10.1016/s0022-0248(02)01306-4

    Google Scholar 

  16. P. Rajakumar, K. Visalakshi, S. Ganesan, P. Maruthamuthu, S.A. Suthanthiraraj, J. Mater. Sci. (2012). doi:10.1007/s10853-011-5967-9

    Google Scholar 

  17. S.R. Annapoorna, M.P. Rao, B. Sethuram, J. Electroanal. Chem. (2000). doi:10.1016/s0022-0728(00)00166-2

    Google Scholar 

  18. L.D. Hicks, A.J. Fry, V.C. Kurzweil, Electrochim. Acta (2004). doi:10.1016/j.electacta.2004.08.003

    Google Scholar 

  19. J.Y. Alston, A.J. Fry, Electrochim. Acta (2004). doi:10.1016/j.electacta.2003.08.028

    Google Scholar 

  20. P. Tompe, G. Clementis, I. Petnehazy, Z.M. Jaszay, L. Toke, Anal. Chim. Acta (1995). doi:10.1016/0003-2670(94)00354-o

    Google Scholar 

  21. Z. Saničanin, I. Tabaković, Tetrahedron Lett. (1986). doi:10.1016/s0040-4039(00)84031-9

    Google Scholar 

  22. Z. Saničanin, I. Tabaković, Electrochim Acta (1988). doi:10.1016/0013-4686(88)80230-5

    Google Scholar 

  23. N. Cotelle, P. Hapiot, J. Pinson, C. Rolando, H. Vezin, J. Phys. Chem. B. (2005). doi:10.1021/jp0550661

    Google Scholar 

  24. K.M. Naik, S.T. Nandibewoor, Am. J. Anal. Chem. (2012). doi:10.4236/ajac.2012.39086

    Google Scholar 

  25. K. Kurosawa, J. Higuchi, Bull. Chem. Soc. Jpn (1972). doi:10.1246/bcsj.45.1132

    Google Scholar 

  26. R. Annapoorna, M.P. Rao, B. Sethuram, Int. J. Chem. Kinet. (2000). doi:10.1002/1097-4601(2000)32:10%3C581::aid-kin1%3E3.0.co;2-k

  27. A. Dhakshinamoorthy, K. Pitchumani, Catal. Commun. (2009). doi:10.1016/j.catcom.2008.12.025

    Google Scholar 

  28. A. Dhakshinamoorthy, K. Pitchumani, Tetrahedron (2006). doi:10.1016/j.tet.2006.08.011

    Google Scholar 

  29. V. Srinivasulu, M. Adinarayana, B. Sethuram, T.N. Rao, React. Kinet. Catal. Lett. (1985). doi:10.1007/bf02064480

    Google Scholar 

  30. Y. Jung, K.I. Son, Y.E. Oh, D.Y. Noh, Polyhedron (2008). doi:10.1016/j.poly.2007.11.015

    Google Scholar 

  31. C.P. Andrieux, J. M. Savéant, in Investigations of Rates and Mechanisms of Reactions, vol. 6, 4/E, part 2, ed. by C. Bernasconi (Wiley, New York, 1986), pp. 305–390

    Google Scholar 

  32. G. Vanangamudi, M. Subramanian, P. Jayanthi, R. Arulkumaran, D. Kamalakkannan, G. Thirunarayanan, Arab. J. Chem. (2011). doi:10.1016/j.arabjc.2011.07.019

    Google Scholar 

  33. T.E. Schuler, S.H. Wang, P. Shirley, R.K. Onmori, J. Mater. Sci. (2008). doi:10.1007/s10853-007-1710-y

    Google Scholar 

  34. S. Ghomrasni, I. Aribi, S. Ayachi, A.H. Said, K. Alimi, J. Phys. Chem. Solids (2015). doi:10.1016/j.jpcs.2015.04.005

    Google Scholar 

  35. J.N. Marx, Y.-S.P. Hahn, J. Org. Chem (1988). doi:10.1021/jo00247a046

    Google Scholar 

  36. B. Miller, J. Am. Chem. Soc. (1965). doi:10.1021/ja00950a023

    Google Scholar 

  37. S. Hammerum, O. Hammerich, Tetrahedron Lett. (1979). doi:10.1016/s0040-4039(01)86780-0

    Google Scholar 

  38. L. Liao, Y. Pang, L. Ding, F.E. Karasz, J. Polym. Sci. Pol. Chem. (2003). doi:10.1002/pola.10810

    Google Scholar 

  39. S. Admassie, O. Inganäs, W. Mammo, E. Perzon, M.R. Andersson, Synthetic. Met. (2006). doi:10.1016/j.synthmet.2006.02.013

    Google Scholar 

  40. T. Johansson, W. Mammo, M. Svensson, M.R. Andersson, O. Inganäs, J. Mater. Chem. (2003). doi:10.1039/b301403g

    Google Scholar 

Download references

Acknowledgments

This research was supported by the Ministry of Higher Education and Scientific Research, Tunisia. Authors are grateful to Mr Adel Rdissi for English revision.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayoub Haj Said.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aribi, I., Ayachi, S., Alimi, K. et al. The anodic reactivity of 4,4′-dimethoxychalcone: a synthetic and mechanistic investigation. Res Chem Intermed 43, 73–89 (2017). https://doi.org/10.1007/s11164-016-2607-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-016-2607-7

Keywords

Navigation