Skip to main content
Log in

Electrochemical oxidation of asymmetric chalcones containing two terminal electroactive moieties

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The electrochemical behavior of two new chalcones, containing carbazole cycle and N,N-disubstituted amino group as terminal electron-donating moieties, was studied. In order to determine a detailed mechanism of their electrochemical oxidation and reduction, comparative analysis of cyclic voltammograms of the chalcones and starting compounds was carried out. It was proven that replacing the N,N-dimethylamino group in the structure of a chalcone with a diphenylamino group significantly changes not only the basic electrochemical characteristics (reduces the HOMO energy value and increases the LUMO energy and the band gap values), but also generally affects the polymerization process. It was also proven that the chalcone containing both a carbazole fragment and a diphenylamino group in its structure is capable of forming oligomeric structures under electrochemical oxidation conditions, due to the sequential dimerization of both electron-donating fragments.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Scheme 2
Fig. 2
Scheme 3
Fig. 3
Scheme 4
Fig. 4

Similar content being viewed by others

References

  1. Chow TJ (2014) Organic structures design: applications in optical and electronic devices. Jenny Stanford Publishing, New York

    Book  Google Scholar 

  2. Yeh K, Lee C, Chen Y (2008) Poly(4-vinyltriphenylamine): Optical, electrochemical properties and its new application as a host material of green phosphorescent ir(ppy)3 dopant. Synth Met 158:565–751. https://doi.org/10.1016/j.synthmet.2008.04.001

    Article  CAS  Google Scholar 

  3. Kuwabara Y, Ogawa H, Inada H, Noma N, Shirota Y (1994) Thermally stable multilared organic electroluminescent devices using novel starburst molecules, 4,4′,4″-tri(N-carbazolyl)triphenylamine (TCTA) and 4,4′,4″-tris(3-methylphenylphenylamino)triphenylamine (m-MTDATA), as hole-transport materials. Adv Mater 6:677–679. https://doi.org/10.1002/adma.19940060913

    Article  CAS  Google Scholar 

  4. Kim T, Mori T, Aida T, Miyajima D (2016) Dynamic propeller conformation for the unprecedentedly high degree of chiral amplification of supramolecular helices. Chem Sci 7:6689–6694. https://doi.org/10.1039/c6sc02814d

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Thomas RJ, Lin JT, Tao YT, Ko CW (2001) Light-emitting carbazole derivatives: potential electroluminescent materials. J Am Chem Soc 123:9404–9411. https://doi.org/10.1021/ja010819s

    Article  CAS  PubMed  Google Scholar 

  6. Jiang H, Sun J, Zhang J (2012) A review on synthesis of carbazole-based chromophores as organic light-emitting materials. Curr Org Chem 16:2014–2025. https://doi.org/10.2174/138527212803251604

    Article  CAS  Google Scholar 

  7. Itami K, Yamazaki D, Yoshida J (2004) Pyrimidine-core extended π-systems: general synthesis and interesting fluorescent properties. J Am Chem Soc 126:15396–15397. https://doi.org/10.1021/ja044923w

    Article  CAS  PubMed  Google Scholar 

  8. Fang B, Chu M, Wu Zh, Shi Y, Zhao YS, Yin M (2019) Efficient triphenylamine-based polymorphs with different mechanochromism and lasing emission: manipulating molecular packing and intermolecular interactions. J Mater Chem C 7:4434–4440. https://doi.org/10.1039/C9TC00156E

    Article  CAS  Google Scholar 

  9. Luponosov YN, Solodukhin AN, Trukhanov VA, Paraschuk DY, Peregudova SM, Dmitryakov PV, Chvalun SN, Ponomarenko SA (2017) Effect of core modification in star-shaped donor-acceptor oligomers on physical properties and photovoltaic performance. Proc SPIE. https://doi.org/10.1117/12.2273805.

    Article  Google Scholar 

  10. Zhao B, Zhao W, Yu L, Li J, Zhao Y, Wang T (2017) Carbazole- and/or triphenylamine-based D-π-D multiarylamino dyes: Synthesis, characterization and photophysical properties. New J Chem 41:13156–13165. https://doi.org/10.1039/c7nj02657a

    Article  CAS  Google Scholar 

  11. Karon K, Lapkowski MJ (2015) Carbazole electrochemistry: a short review. Solid State Electrochem 19:2601–2610. https://doi.org/10.1007/s10008-015-2973-x

    Article  CAS  Google Scholar 

  12. Vacareanu L, Grigoras M (2010) Electrochemical characterization of arylene vinylene oligomers containing triphenylamine and carbazole units. J Appl Electrochem 40:1967–1975. https://doi.org/10.1007/s10800-010-0173-z

    Article  CAS  Google Scholar 

  13. Compton RG, Davis FG, Grant SC (1986) The anodic oxidation of poly(N-vinylcarbazole)films. J Appl Electrochem 16:239–249. https://doi.org/10.1007/BF01093356

    Article  CAS  Google Scholar 

  14. Aribi I, Ayachi S, Alimi K, Roudesli S, Said AH (2016) The anodic reactivity of 4,4′-dimethoxychalcone: a synthetic and mechanistic investigation. Res Chem Intermediat 43:73–89. https://doi.org/10.1007/s11164-016-2607-7

    Article  CAS  Google Scholar 

  15. Hicks LD, Fry AJ, Kurzweil VC (2004) Ab initio computation of electron affinities of substituted benzalacetophenones (chalcones): a new approach to substituent effects in organic electrochemistry. Electrochim Acta 50:1039–1047. https://doi.org/10.1016/j.electacta.2004.08.003

    Article  CAS  Google Scholar 

  16. Zhu Y, Zhang J, Chen Z, Zhang A, Ma C (2016) Synthesis of nitrocarbazole compounds and their electrocatalytic oxidation of alcohol. Chin J Catal 37:533–538. https://doi.org/10.1016/s1872-2067(15)61047-6

    Article  CAS  Google Scholar 

  17. Wu X, Davis AP, Fry AJ (2007) Electrocatalytic oxidative cleavage of electron-deficient substituted stilbenes in acetonitrile−water employing a new high oxidation potential electrocatalyst. An electrochemical equivalent of ozonolysis. Org Lett 9:5633–5636. https://doi.org/10.1021/ol702641

    Article  CAS  PubMed  Google Scholar 

  18. Nandedkar N, Jagdale D, Arote Y, Patel M, Kadam V (2013) Recent development in synthesis and application of multifceted chalcone compounds. Indo Am J Pharmaceut Res 3:7493–7505

    Google Scholar 

  19. Wu P, Zhang X, Chen B (2019) Direct synthesis of 2,4,5-trisubstituted imidazoles and Di/Tri-substituted pyrimidines via cycloadditions of α, β-unsaturated Ketones/Aldehydes and N'-hydroxyl imidamides. Tetrahedron Lett 60:1103–1107. https://doi.org/10.1016/j.tetlet.2019.03.025

    Article  CAS  Google Scholar 

  20. Karaca H, Çayeğil B, Sezer S (2016) Synthesis characterization and metal sensing applications of novel chalcone substituted phthalocyanines. Synth Met 215:134–141. https://doi.org/10.1016/j.synthmet.2016.02.007

    Article  CAS  Google Scholar 

  21. Selivanova DG, Shklyaeva EV, Shavrina TV, Abashev GG (2014) New thiophene- and phenothiazine-containing chalcones: synthesis and electrochemical properties. Russ J Org Chem 50:1213–1217. https://doi.org/10.1134/S1070428014080272

    Article  CAS  Google Scholar 

  22. Herbivo C, Comel A, Kirsch G, Raposo MMM (2009) Synthesis of 5-aryl-5′-formyl-2,2′-bithiophenes as new precursors for nonlinear optical (NLO) materials. Tetrahedron 65:2079–2086. https://doi.org/10.1016/j.tet.2008.12.078

    Article  CAS  Google Scholar 

  23. Wang H-L, Zhang B, Xu W-Y, Bai Y-Q, Wu H (2007) (4-Acetylphenyl)diphenylamine. Acta Cryst E63:o2648–o2649. https://doi.org/10.1107/S1600536807017904

    Article  CAS  Google Scholar 

  24. McKeown NB, Badriya S, Helliwell M, Shkunov M (2007) The synthesis of robust, polymeric hole-transport materials from oligoarylamine substituted styrenes. J Mater Chem 17:2088–2094. https://doi.org/10.1039/B614235D

    Article  CAS  Google Scholar 

  25. Sadki S, Schottland Ph, Brodie N, Sabouraud G (2000) The mechanisms of pyrrole electropolymerization. Chem Soc Rev 29:283–293. https://doi.org/10.1039/A807124A

    Article  Google Scholar 

  26. Seo ET, Nelson RF, Fritsch JM, Marcoux LS, Leedy DW, Adams RNJ (1966) Anodic oxidation pathways of aromatic amines. Electrochemical and electron paramagnetic resonance studies. Am Chem Soc 88:3498–3503. https://doi.org/10.1021/ja00967a006

    Article  CAS  Google Scholar 

  27. Marcoux LS, Adams RN, Feldberg SW (1969) Dimerization of triphenylamine cation radicals. Evaluation of kinetics using the rotating disk electrode. J Phys Chem 78:2611–2614. https://doi.org/10.1021/j100842a025

    Article  Google Scholar 

  28. Bruning WH, Nelson RF, Marcoux LS, Adams RN (1967) The structure of the iodine-triphenylamine charge-transfer complex. J Phys Chem 71:3055–3058. https://doi.org/10.1021/j100868a047

    Article  CAS  Google Scholar 

  29. Lambert C, Nöll G (1999) The class II/III transition in triarylamine redox systems. J Am Chem Soc 121:8434–8442. https://doi.org/10.1021/ja991264s

    Article  CAS  Google Scholar 

  30. Leung M-K, Chou M-Y, Su YO, Chiang CL, Chen H-L, Yang CF, Yang C-C, Lin C-C, Chen H-T (2003) Diphenylamino group as an effective handle to conjugated donor-acceptor polymers through electropolymerization. Org Lett 5:839–842. https://doi.org/10.1021/ol027474i

    Article  CAS  PubMed  Google Scholar 

  31. Melicharek M, Nelson RF (1970) The electrochemical oxidation of N, N-dimethyl-p-toluidine. J Electroanal Chem 26:201–209. https://doi.org/10.1016/S0022-0728(70)80304-7

    Article  CAS  Google Scholar 

  32. Rees NV, Klymenko OV, Compton RG, Oyama M (2002) The electro-oxidation of N, N-dimethyl-p-toluidine in acetonitrile: a microdisk voltammetry study. J Electroanal Chem 531:33–42. https://doi.org/10.1016/S0022-0728(02)01054-9

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was performed in accordance with the state task, state registration No AAAA-A18-118033090090-0.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. G. Slobodinyuk.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Slobodinyuk, D.G., Shklyaeva, E.V. & Abashev, G.G. Electrochemical oxidation of asymmetric chalcones containing two terminal electroactive moieties. J Appl Electrochem 50, 757–766 (2020). https://doi.org/10.1007/s10800-020-01434-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-020-01434-z

Keywords

Navigation