Skip to main content
Log in

Syngas conversion beyond chemical equilibrium by in situ bimolecular reaction

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

An in situ bimolecular reaction, in which syngas is fed with toluene as a secondary reactant (hereafter Tol in situ methylation), was studied over bifunctional catalysts comprised of methanol synthesis catalyst and H-ZSM-5 in a fixed-bed down-flow reactor at 460 psig. When physically mixed with H-ZSM-5 to form bifunctional catalysts, CrZ_HZ (Cr2O3/ZnO + HZSM-5) catalyst showed much higher activity than CZA_HZ (CuO/ZnO/Al2O3 + H-ZSM-5) in the Tol in situ methylation, while CrZ catalyst exhibited substantially lower activity than CZA in methanol synthesis. CO conversion to methanol in the Tol in situ methylation was estimated by Bz in situ methylation. The CO conversion to methanol was calculated to be in the range of 11–27 %, while that in methanol synthesis over CrZ was about 5 % at most due to chemical equilibrium limitation. By employing a silicalite-coated H-ZSM-5 (Sil/HZ) in bifunctional catalyst, xylene selectivity and para-xylene yield were much improved in the Tol in situ methylation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. C.D.L. Chang, W.H. Lang, A. Silvestri, US Patent (1978)

  2. P. Mohanty, K.K. Pant, J. Parikh, D.K. Sharma, Fuel Process. Technol. 92, 600 (2011)

    Article  CAS  Google Scholar 

  3. J. Erena, J.M. Arandes, J. Bilbao, M. Olazar, H.I. de Lasa, J. Chem. Technol. Biotechnol. 72, 190 (1998)

    Article  CAS  Google Scholar 

  4. Y.T.T. Inui, ACS Symp. Ser. 27, 982 (1982)

    CAS  Google Scholar 

  5. H.M.T. Galvis, J.H. Bitter, C.B. Khare, M. Ruitenbeek, A.I. Dugulan, K.P. de Jong, Science 335, 835 (2012)

    Article  Google Scholar 

  6. C. Lopez, A. Corma, ChemCatChem. 4, 751 (2012)

    Article  CAS  Google Scholar 

  7. J.H. Kim, M.J. Park, S.J. Kim, O.S. Joo, K.D. Jung, Appl. Catal. A 264, 37 (2004)

    Article  CAS  Google Scholar 

  8. C. Kiener, M. Kurtz, H. Wilmer, C. Hoffmann, H.W. Schmidt, J.D. Grunwaldt, M. Muhler, F. Schuth, J. Catal. 216, 110 (2003)

    Article  CAS  Google Scholar 

  9. R. Horn, K.A. Williams, N.J. Degenstein, A. Bitsch-Larsen, D.D. Nogare, S.A. Tupy, L.D. Schmidt, J. Catal. 249, 380 (2007)

    Article  CAS  Google Scholar 

  10. Q.G. Yan, P.T. Doan, H. Toghiani, A.C. Gujar, M.G. White, J. Phys. Chem. C 112, 11847 (2008)

    Article  CAS  Google Scholar 

  11. J. Erena, J. Bilbao, A.T. Aguayo, H.I. de Lasa, Ind. Eng. Chem. Res. 37, 1211 (1998)

    Article  CAS  Google Scholar 

  12. F. Marschner, F.W. Moeller, Methanol synthesis, in Applied Industrial Catalysis, vol 2, ed. by B.E. Leach (Academic Press, New York, 1983), pp. 215–243

  13. Y.W. Suh, S.H. Moon, H.K. Rhee, Catal. Today 63, 447 (2000)

    Article  CAS  Google Scholar 

  14. M.C.J. Bradford, M.V. Konduru, D.X. Fuentes, Fuel Process. Technol. 83, 11 (2003)

    Article  CAS  Google Scholar 

  15. J.W. Bae, S.H. Kang, Y.J. Lee, K.W. Jun, Appl. Catal. B 90, 426 (2009)

    Article  CAS  Google Scholar 

  16. J.G. van Bennekom, R.H. Venderbosch, J.G.M. Winkelman, E. Wilbers, D. Assink, K.P.J. Lemmens, H.J. Heeres, Chem. Eng. Sci. 87, 204 (2013)

    Article  Google Scholar 

  17. X.K. Phan, H. Bakhtiary-Davijany, R. Myrstad, P. Pfeifer, H.J. Venvik, A. Holmen, Appl. Catal. A 405, 1 (2011)

    Article  CAS  Google Scholar 

  18. M. Behrens, J. Catal. 267, 24 (2009)

    Article  CAS  Google Scholar 

  19. Q.J. Ge, Y.M. Huang, F.Y. Qiu, S.B. Li, Appl. Catal. A 167, 23 (1998)

    Article  CAS  Google Scholar 

  20. J. Erena, R. Garona, J.M. Arandes, A.T. Aguayo, J. Bilbao, Catal. Today 107–08, 467 (2005)

    Article  Google Scholar 

  21. D.S. Mao, W.M. Yang, J.C. Xia, B. Zhang, Q.Y. Song, Q.L. Chen, J. Catal. 230, 140 (2005)

    Article  CAS  Google Scholar 

  22. G.H. Yang, N. Tsubaki, J. Shamoto, Y. Yoneyama, Y. Zhang, J. Am. Chem. Soc. 132, 8129 (2010)

    Article  CAS  Google Scholar 

  23. A. Garcia-Trenco, A. Martinez, Appl. Catal. A 411, 170 (2012)

    Article  Google Scholar 

  24. A. Venugopal, J. Palgunadi, K.D. Jung, O.S. Joo, C.H. Shin, Catal. Lett. 123, 142 (2008)

    Article  CAS  Google Scholar 

  25. F. Simard, A. Mahay, A. Ravella, G. Jean, L.H. De, Ind. Eng. Chem. Res. 30, 1448 (1991)

    Article  CAS  Google Scholar 

  26. F. Simard, U.A. Sedran, J. Sepulveda, N.S. Figoli, H.I. Delasa, Appl. Catal. A 125, 81 (1995)

    Article  CAS  Google Scholar 

  27. J. Erena, J.M. Arandes, J. Bilbao, A.G. Gayubo, H.I. De Lasa, Chem. Eng. Sci. 55, 1845 (2000)

    Article  CAS  Google Scholar 

  28. J. Bao, J. He, Y. Zhang, Y. Yoneyama, N. Tsubaki, Angew. Chem. Int. Ed. 47, 353 (2008)

    Article  CAS  Google Scholar 

  29. P.C. Zonetti, A.B. Gaspar, F.M.T. Mendes, E.V. Sobrinho, E.F. Sousa-Aguiar, L.G. Appel, Fuel Process. Technol. 91, 469 (2010)

    Article  CAS  Google Scholar 

  30. P.B. Weisz, Adv. Catal. 13, 137 (1962)

    CAS  Google Scholar 

  31. S. Lee, D. Kim, J. Lee, Y. Choi, Y.W. Suh, C.Q. Lee, T.J. Kim, S.J. Lee, J.K. Lee, Appl. Catal. A 466, 90 (2013)

    Article  CAS  Google Scholar 

  32. C. Baltes, S. Vukojevic, F. Schuth, J. Catal. 258, 334 (2008)

    Article  CAS  Google Scholar 

  33. D. Van Vu, M. Miyamoto, N. Nishiyama, S. Ichikawa, Y. Egashira, K. Ueyama, Micropor. Mesopor. Mater. 115, 106 (2008)

    Article  CAS  Google Scholar 

  34. J.W. Evnas, M.S. Wainwright, A.J. Bridgewater, D.J. Young, Appl. Catal. 7, 75 (1983)

    Article  Google Scholar 

  35. E. Samei, M. Taghizadeh, M. Bahmani, Fuel Process. Technol. 96, 128 (2012)

    Article  CAS  Google Scholar 

  36. P. Kurr, I. Kasatkin, F. Girgsdies, A. Trunschke, R. Schlogl, T. Ressler, Appl. Catal. A 348, 153 (2008)

    Article  CAS  Google Scholar 

  37. N. Liu, Z.S. Yuan, C.W. Wang, S.D. Wang, C.X. Zhang, S.J. Wang, Fuel Process. Technol. 89, 574 (2008)

    Article  CAS  Google Scholar 

  38. J. Wei, J. Catal. 76, 433 (1982)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Dong-A University research fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jung Kyoo Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, D., Lee, S., Lee, J. et al. Syngas conversion beyond chemical equilibrium by in situ bimolecular reaction. Res Chem Intermed 42, 249–267 (2016). https://doi.org/10.1007/s11164-015-2353-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-015-2353-2

Keywords

Navigation