Skip to main content
Log in

Cu–Zn–Cr2O3 Catalysts for Dimethyl Ether Synthesis: Structure and Activity Relationship

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The CuO dispersed on ZnCr2O4 catalysts derived from Cu–Zn–Cr hydrotalcite like layered double hydroxide precursors with varying Zn/Cr ratios have been synthesized, characterized by BET—Surface area, X-ray diffraction (XRD), temperature programmed reduction (TPR), electron spin resonance (ESR), N2O titrations and the activities were evaluated for single step dimethyl ether (STD) synthesis from syngas. It is observed that the copper species were in highly dispersed state over Cu–ZnO–Cr2O3 at high Zn/Cr ratios while the copper cluster were present at low Zn/Cr ratios. The ESR analysis revealed signals due to isolated Cu2+ at high Zn/Cr ratios and clustered Cu2+ at low Zn/Cr ratio in fresh catalysts and only Cr3+ species in used catalysts. The TPR results indicated that the reduction peak shifted to high temperatures with an increase in chromium content due to large copper crystallites, which was supported by XRD analysis. The conversion of syngas to DME was well correlated with the copper metal surface areas, indicating that STD synthesis can be controlled by methanol synthesis rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Fujimoto K, Asami K, Shikada T, Tominaga H (1984) Chem Lett 2051

  2. Hansen JG, Voss B, Joensen F, Siguroardottir ID (1995) SAE Technical Paper Series 950063

  3. Klier K, Chatikavanij V, Herman RG, Simmons GW (1982) J Catal 74:343

    Article  CAS  Google Scholar 

  4. Fleisch TH, Mieville RL (1984) J Catal 90:165

    Article  CAS  Google Scholar 

  5. Busetto C, Del Piero G, Manara G, Trifiro F, Vaccari A (1984) J Catal 85:260

    Article  Google Scholar 

  6. Campos-Martin JM, Guerrero-Ruiz A, Fierro JLG (1995) J Catal 156:208

    Article  CAS  Google Scholar 

  7. Kim JH, Park M, Joo OS, Jung KD (2004) Appl Catal 264:37

    Article  CAS  Google Scholar 

  8. Frost JC (1988) Nature 334:557

    Article  Google Scholar 

  9. Klier K (1982) Adv Catal 31:243

    Article  CAS  Google Scholar 

  10. Bartley GJJ, Burch R (1988) Appl Catal 43:141

    Article  CAS  Google Scholar 

  11. Joo OS, Jung KD, Han SH, Uhm SJ (1995) J Catal 157:259

    Article  CAS  Google Scholar 

  12. Joo OS, Jung KD, Han SH, Uhm SJ, Lee DK, Ihm SK (1996) Appl Catal 135:273

    Article  CAS  Google Scholar 

  13. Fischer IA, Bell AT (1998) J Catal 178:153

    Article  Google Scholar 

  14. Spencer MS (1998) Catal Lett 50:101

    Article  Google Scholar 

  15. Miller GJ, Rochester CH, Bailey S, Waugh KC (1992) J Chem Soc Faraday Trans 88:2085

    Article  Google Scholar 

  16. Chinchen GC, Waugh KC, Whan DA (1986) Appl Catal 25:101

    Article  CAS  Google Scholar 

  17. Bart JCJ, Sneeden RPA (1987) Catal Today 2:1

    Article  CAS  Google Scholar 

  18. Burch R, Golunski SE, Spencer MS (1990) J Chem Soc Faraday Trans 86:2683

    Article  Google Scholar 

  19. Denise B, Sneeden RPA, Beguin B, Cherifi O (1987) Appl Catal 30:353

    Article  CAS  Google Scholar 

  20. Fisher IA, Woo HC, Bell AT (1997) Catal Lett 44:11

    Article  CAS  Google Scholar 

  21. Kiennemann A, Irdris H, Hindermann J, Lavalley J, Vallet A, Chaumette P, Courty P (1990) Appl Catal 59:165

    Article  CAS  Google Scholar 

  22. Spencer MS (1987) Surf Sci 192:336

    Article  CAS  Google Scholar 

  23. van Herwijnen T, de Jong WA (1974) J Catal 34:209

    Article  Google Scholar 

  24. Jung KD, Joo OS, Han SH, Uhm SJ, Chung IJ (1995) Catal Lett 35:303

    Article  CAS  Google Scholar 

  25. Jung KD, Joo O-S (2002) Catal Lett 84:21

    Article  CAS  Google Scholar 

  26. Kloprogge JT, Hickey L, Frost RL (2005) Mater Chem Phys 89:99

    Article  CAS  Google Scholar 

  27. Evans JW, Wainwright MS, Bridgewater AJ, Young DJ (1983) Appl Catal 7:75

    Article  CAS  Google Scholar 

  28. Robinson WRAM, Mol JC (1990) Appl Catal 60:73

    Article  CAS  Google Scholar 

  29. Porta P, Morpurgo S (1995) Appl Clay Sci 10:31

    Article  CAS  Google Scholar 

  30. Morpurgo S, Jacano ML, Porta P (1995) J Solid State Chem 119:246

    Article  CAS  Google Scholar 

  31. Frost RL, Ding Z (2003) Thermochim Acta 405:207

    Article  CAS  Google Scholar 

  32. Trifiro F, Vaccari A, Piero GD (1988) In: Unger KK, Raoquerol J, Sing KSW, Kral H (eds) Characterization of porous solids. Elsevier, Amsterdam, p 571

    Google Scholar 

  33. Terlecki-Baricevic A, Jovanovic D, Grbic B, Marinova T, Kirilov-Stefanov P (1994) Appl Catal A: Gen 108:115

    Article  CAS  Google Scholar 

  34. Wang Z, Liu Q, Yu J, Wu T, Wang G (2003) Appl Catal A: Gen 239:87

    Article  CAS  Google Scholar 

  35. Sakata S, Nakai T, Yahiro H, Shiotani M (1997) Appl Catal A: Gen 165:467

    Article  CAS  Google Scholar 

  36. Tanabe T, Iijima T, Koiwai A, Mijuno J, Yokota K, Isogai A (1995) Appl Catal B: Environ 6:145

    Article  CAS  Google Scholar 

  37. Bahranowski K, Dula R, Gasior M, Labanowski M, Michalik A, Vartikian LA, Serwicka EM (2001) Appl Clay Sci 18:93

    Article  CAS  Google Scholar 

  38. Poole CP Jr, Kehl WL, MacIver DS (1962) J Catal 1:407

    Article  CAS  Google Scholar 

  39. Wojciechowska M, Haber J, Lomnicki S, Stoch J (1999) J Mol Catal A: Chem 141:155

    Article  CAS  Google Scholar 

  40. Lee CY, Jung TH, Ha BH (1996) Appl Catal B: Environ 9:77

    CAS  Google Scholar 

  41. Ralek M, Gunsser W, Knappwost A (1968) J Catal 11:317

    Article  CAS  Google Scholar 

  42. Campos-Martin JM, Fierro JLG, Guerrero-Ruiz A, Herman RG, Klier K (1996) J Catal 163:418

    Article  CAS  Google Scholar 

  43. Robinson WRAM, Mol JC (1990) Appl Catal 60:61

    Article  CAS  Google Scholar 

  44. Huang X, Ma L, Wainwright MS (2004) Appl Catal A: Gen 257:235

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is financially supported by a program of Energy and Resources Technology Development. One of the authors AV acknowledges the KOFST, (Korea) for financial support and Director-IICT, Hyderabad and CSIR-New Delhi, India.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Akula Venugopal or Kwang Deog Jung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Venugopal, A., Palgunadi, J., Jung, K.D. et al. Cu–Zn–Cr2O3 Catalysts for Dimethyl Ether Synthesis: Structure and Activity Relationship. Catal Lett 123, 142–149 (2008). https://doi.org/10.1007/s10562-008-9408-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-008-9408-6

Keywords

Navigation