Skip to main content
Log in

Enantioselective hydrogenation of α-phenylcinnamic acids over cinchonidine-modified Pd/C commercial catalysts

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Enantioselective hydrogenation of α-phenylcinnamic acid (PCA) and p,p′-dimethoxyphenylcinnamic acid (DMPCA) was studied over a variety of commercial 5 % Pd/C catalysts to reveal catalyst properties suitable for obtaining high enantioselectivity. The catalysts were characterized by CO adsorption, X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM). It is confirmed that pretreatment at 353 K under atmospheric pressure of H2 before modification with cinchonidine is very effective for all the Pd/C catalysts used here to improve the selectivity and reaction rate. It is suggested that the distribution of Pd metal particles is crucial to attain high selectivity (ee% = 79 ± 1 for PCA, 89 ± 2 for DMPCA): a uniform or eggshell-type distribution of Pd is more suitable than an egg-white or egg-yolk-type distribution. It is also suggested that the dispersion of Pd metal particles controls the enantioselectivity over cinchonidine (CD)-modified Pd/C catalysts. XPS techniques are proposed to provide a convenient method to find desirable catalysts. The choice of such Pd/C catalysts could facilitate high-throughput guided study on highly enantioselective hydrogenation of α,β-unsaturated carboxylic acids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. T. Mallat, E. Orglmeister, A. Baiker, Chem. Rev. 107, 4863 (2007)

    Article  CAS  Google Scholar 

  2. A. Baiker, H. U. Blaser, in Handbook of Heterogeneous Catalysis, Eds. G. Ertl, H. Knözinger, J. Weitkamp, VCH, Weinheim, Vol.5, p. 2422 (1997)

  3. E. Zhan, C. Chen, Y. Li, W. Shen, Catal. Sci. Technol. 5, 650 (2015)

    Article  CAS  Google Scholar 

  4. M. Studer, H.U. Blaser, C. Exner, Adv. Synth. Catal. 345, 45 (2003)

    Article  CAS  Google Scholar 

  5. H.U. Blaser, F. Spindler, M. Studer, Appl. Catal. A 221, 119 (2001)

    Article  CAS  Google Scholar 

  6. D.Y. Murzin, P. Maki-Arvela, E. Toukoniitty, T. Salmi, Catal. Rev. Sci. Eng. 47, 175 (2005)

    Article  CAS  Google Scholar 

  7. Y. Izumi, Adv. Catal. 32, 215 (1983)

    CAS  Google Scholar 

  8. H.U. Blaser, Tetrahedron Asymmetry 2, 843 (1991)

    Article  CAS  Google Scholar 

  9. T. Sugimura, Catal. Surv. Jpn. 3, 37 (1999)

    Article  CAS  Google Scholar 

  10. Y. Nitta, Top. Catal. 13, 179 (2000)

    Article  CAS  Google Scholar 

  11. Y. Nitta, J. Synth. Org. Chem. Jpn. 64, 827 (2006)

    Article  CAS  Google Scholar 

  12. A. Tungler, E. Sipos, H. Hada, Curr. Org. Chem. 10, 1569 (2006)

    Article  CAS  Google Scholar 

  13. T. Sugimura in Handbook of Asymmetric Heterogeneous Catalysis Eds. K. Ding, Y. Uozumi, Wiley-VCH, Verlag, Weinheim, p. 357 (2008)

  14. Y. Nitta, Chem. Lett. 28, 635 (1999)

    Article  Google Scholar 

  15. T.Y. Kim, T. Sugimura, J. Mol. Catal. A 327, 58 (2010)

    Article  CAS  Google Scholar 

  16. G. Szöllösi, B. Herman, F. Fulop, M. Bartok, J. Catal. 276, 259 (2010)

    Article  Google Scholar 

  17. G. Szollosi, T. Hanaoka, S. Niwa, F. Mizukami, M. Bartok, J. Catal. 231, 480 (2005)

    Article  Google Scholar 

  18. Z. Makra, G. Szöllösi, M. Bartok, Catal. Today 181, 56 (2012)

    Article  CAS  Google Scholar 

  19. F. Meemken, N. Maeda, K. Hungerbuhler, A. Baiker, ACS Catal. 2, 464 (2012)

    Article  CAS  Google Scholar 

  20. K. Nakai, T. Misaki, Y. Okamoto, T. Sugimura, Bull. Chem. Soc. Jpn. 88, 300 (2015)

    Article  Google Scholar 

  21. J.R.G. Perez, J. Malthete, J. Jacques, C. R. Acad. Sci. Paris 300, 169 (1985)

    CAS  Google Scholar 

  22. Y. Nitta, Y. Ueda, T. Imanaka, Chem. Lett. 23, 1095 (1994)

    Article  Google Scholar 

  23. Y. Nitta, T. Kubota, Y. Okamoto, Bull. Chem. Soc. Jpn. 73, 2635 (2000)

    Article  CAS  Google Scholar 

  24. Y. Nitta, K. Kobiro, Y. Okamoto, Stud. Surf. Sci. Catal. 108, 191 (1997)

  25. Y. Nitta, K. Kobiro, Chem. Lett. 25, 897 (1996)

  26. T. Kubota, H. Kubota, T. Kubota, E. Moriyasu, T. Uchida, Y. Nitta, T. Sugimura, Y. Okamoto, Catal. Lett. 129, 387 (2009)

    Article  CAS  Google Scholar 

  27. Y. Nitta, Y. Okamoto, Chem. Lett. 27, 1115 (1998)

  28. Y. Nitta, J. Watanabe, T. Okuyama, T. Sugimura, J. Catal. 236, 164 (2005)

    Article  CAS  Google Scholar 

  29. T. Sugimura, T. Uchida, J. Watanabe, T. Kubota, Y. Okamoto, T. Misaki, T. Okuyama, J. Catal. 262, 57 (2009)

    Article  CAS  Google Scholar 

  30. T. Misaki, H. Otsuka, T. Uchida, T. Kubota, Y. Okamoto, T. Sugimura, J. Mol. Catal. A 312, 48 (2009)

    Article  CAS  Google Scholar 

  31. T.Y. Kim, M. Yokota, T. Uchida, T. Sugimura, Catal. Lett. 131, 279 (2009)

    Article  CAS  Google Scholar 

  32. T.Y. Kim, T. Uchida, H. Ogawa, Y. Nitta, T. Okuyama, T. Sugimura, S. Hirayama, T. Honma, M. Sugiura, T. Kubota, Y. Okamoto, Top. Catal. 53, 116 (2010)

    Article  CAS  Google Scholar 

  33. T. Kubota, H. Ogawa, Y. Okamoto, T. Misaki, T. Sugimura, Appl. Catal. A 437/438, 18 (2012)

    Article  Google Scholar 

  34. T. Mameda, K. Nakai, T. Misaki, Y. Okamoto, T. Sugimura, Catal. Today 245, 129 (2015)

    Article  CAS  Google Scholar 

  35. H. Ogawa, T. Mameda, T. Misaki, Y. Okamoto, T. Sugimura, Chem. Lett. 42, 813 (2013)

    Article  CAS  Google Scholar 

  36. G. Szöllösi, B. Herman, K. Felfoldi, F. Fulop, M. Bartok, Adv. Synth. Catal. 359, 2804 (2008)

    Article  Google Scholar 

  37. G. Szöllösi, B. Herman, K. Felfoldi, F. Fulop, M. Bartok, J. Mol. Catal. A 290, 54 (2008)

    Article  Google Scholar 

  38. C.D. Wagner, W.M. Riggs, L.E. Davis, J.E. Moulder, G.E. Mullenberg, Handbook of X-Ray Photoelectron Spectroscopy (PerkinElmer Corp., Minnesota, 1979)

    Google Scholar 

  39. J. W. Niemantsverdriet, Spectroscopy in Catalysis, Chap. 3, VCH, Weinheim, p. 52 (1995)

  40. F.P.J.M. Kerkhof, J.A. Moulijn, J. Phys. Chem. 83, 1612 (1979)

    Article  CAS  Google Scholar 

  41. Y. Nitta, T. Kubota, Y. Okamoto, Bull. Chem. Soc. Jpn 74, 2161 (2001)

    Article  CAS  Google Scholar 

  42. T.S.B. Trung, Y. Kim, S. Kang, H. Lee, S. Kim, Catal. Commun. 66, 21 (2015)

    Article  Google Scholar 

  43. K. Szori, R. Puskas, G. Szöllösi, L. Bertoti, J. Szepvolgyi, M. Bartok, Catal. Lett. 14, 539 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

We would like to express our sincere thanks to Evonik Industries AG and N.E. Chemcat Co. for donating the Pd/C catalysts used in the present study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Sugimura.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 35 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sato, H., Mameda, T., Nakai, K. et al. Enantioselective hydrogenation of α-phenylcinnamic acids over cinchonidine-modified Pd/C commercial catalysts. Res Chem Intermed 42, 31–45 (2016). https://doi.org/10.1007/s11164-015-2313-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-015-2313-x

Keywords

Navigation