Skip to main content
Log in

Synthesis, characterization and curing behavior of methyl-tri(phenylethynyl)silane

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Methyl-tri(phenylethynyl)silane ((ph-C≡C)3-Si-CH3) (MTPES) was synthesized with methyltrichlorosilane and phenylethylene by Grignard reaction. Its molecular structure was characterized by Fourier transform infrared spectroscopy, nuclear magnetic resonance (1H-NMR, 13C-NMR, and 29Si-NMR). Its curing behavior was analyzed by non-isothermal differential scanning calorimetry and rheometry, and the corresponding kinetic parameters and kinetic model were also discussed by Kissinger, Ozawa, Flynn–Wall–Ozawa and Friedman methods. The results showed that the melting point of MTPES was 130 °C and the processing window was 200 °C. The activation energy E a, pre-exponential factor lnA and the reaction order n, m were 112.58 kJ/mol, 21.22 (s−1), 1.20 and 0.56, respectively. The curing behavior of MTPES followed the autocatalytic kinetic model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. S.B. Sastri, J.P. Armistead, T.M. Keller, Cure kinetics of a multisubstituted acetylenic monomer. Polymer 36(7), 1449–1454 (1995)

    Article  CAS  Google Scholar 

  2. M. Itoh, K. Inoue, K. Iwata et al., New highly heat-resistant polymers containing silicon: poly(silyleneethynylenephenyleneethynylene)s. Macromolecules 30(4), 694–701 (1997)

    Article  CAS  Google Scholar 

  3. Z. Jiang, Y. Zhou, L. Du, Characterization of a modified silicon-containing arylacetylene resin with POSS functionality. Chin. J. Polym. Sci. 29(6), 726–731 (2011)

    Article  CAS  Google Scholar 

  4. Y. Wu, R. Yu, L. Hu et al., Thermal stability of cocured blends of vinyl trimethoxysilane and aryl acetylene resins with different posttreatments. J. Appl. Polym. Sci. 131(8), 40158–40163 (2014)

    Article  Google Scholar 

  5. S. Tannenbaum, S. Kaye, G.F. Lewenz, Synthesis and properties of some alkylsilanes. J. Am. Chem. Soc. 75(15), 3753–3757 (1953)

    Article  CAS  Google Scholar 

  6. A.P. Melissaris, M.H. Litt, New high-Tg, heat-resistant, cross-linked polymers. 1. Synthesis and characterization of di-p-ethynyl-substituted benzyl phenyl ether monomers. Macromolecules 27(4), 883–887 (1994)

    Article  CAS  Google Scholar 

  7. Z.L. Dai, Q. Chen, L.Z. Ni et al., Curing kinetics and structural changes of a of di[(N-m-acetenylphenyl) phthalimide] ether/[(methyl) diphenylacetylene]silane copolymer. J. Appl. Polym. Sci. 100, 2126–2130 (2006)

    Article  CAS  Google Scholar 

  8. B. Wrackmeyer, E. Khan, S. Bayer et al., Alkynylsilanes and alkynyl (vinyl) silanes. Synthesis, molecular structures and multinuclear magnetic resonance study. Zeitschrift für Naturforschung B 65(6), 725–744 (2010)

    Article  CAS  Google Scholar 

  9. I. Kownacki, B. Orwat, B. Marciniec et al., A new and efficient route for the synthesis of alkynyl functionalized silicon derivatives. Tetrahedron Lett. 55(2), 548–550 (2014)

    Article  CAS  Google Scholar 

  10. C. Hamdouchi, H.M. Walborsky, Mechanism of Grignard Reagent Formation (Marcel Dekker, New York, 1996), pp. 145–218

    Google Scholar 

  11. Q. Chen, Y. Li, Z.L. Dai et al., Synthesis and characterization of methyl-di (phenylethynyl) silane and its network polymer. Acta. Chim. Sin. 63(3), 254–258 (2005)

    CAS  Google Scholar 

  12. A. Boudin, G. Cerveau, C. Chuit et al., Reactivity of anionic pentacoordinated silicon complexes towards nucleophiles. Angew. Chem. Int. Ed. 25(5), 473–474 (1986)

    Article  Google Scholar 

  13. R. J. Corriu, G. E. Cerveau, C. G. Chuit, et al. Crosslinking agents; drugs. U. S. Pat. 4617413, 1986

  14. C. Kim, K. Jeong, I. Jung, Progress toward limiting generation of dendritic ethynylsilanes (PhC≡C)4−nMenSi(n=0–2). J. Polym. Sci. Part A Polym. Chem. 38(15), 2749–2759 (2000)

    Article  CAS  Google Scholar 

  15. Q. Zhou, X. Feng, L. Ni et al., Novel heat resistant methyl-tri(phenylethynyl) silane resin: synthesis, characterization and thermal properties. J. Appl. Polym. Sci. 102(3), 2488–2492 (2006)

    Article  CAS  Google Scholar 

  16. Q. Zhou, X. Feng, H.Q. Zhao et al., Curing behavior and thermal property of methyl-tri(phenylethynyl)silaneresin. J. Funct. Polym. 20(1), 97–103 (2007)

    Google Scholar 

  17. Z. Luo, L. Wei, F. Liu et al., Study on thermal cure and heat-resistant properties of N-(3-acetylenephenyl) maleimide monomer. Eur. Polym. J. 43(8), 3461–3470 (2007)

    Article  CAS  Google Scholar 

  18. Q. Zhou, L. Ni, Thermal cure behavior and pyrolysis of methyl-tri(phenylethynyl) silane resin. J. Appl. Polym. Sci. 113(1), 10–16 (2009)

    Article  CAS  Google Scholar 

  19. D. Tan, T. Shi, Z. Li, Synthesis, characterization, and non-isothermal curing kinetics of two silicon-containing arylacetylenic monomers. Res. Chem. Intermed. 37(8), 831–845 (2011)

    Article  CAS  Google Scholar 

  20. H.E. Kissinger, Reaction kinetics in differential thermal analysis. Anal. Chem. 29(11), 1702–1706 (1957)

    Article  CAS  Google Scholar 

  21. T. Ozawa, Non-isothermal kinetics and generalized time. Thermochim. Acta 100(1), 109–118 (1986)

    Article  CAS  Google Scholar 

  22. Y. Lu, M. Li, Y. Zhang et al., Synthesis and curing kinetics of benzoxazine containing fluorene and furan groups. Thermochim. Acta 515(1), 32–37 (2011)

    Article  CAS  Google Scholar 

  23. N. Sbirrazzuoli, Y. Girault, L. Elégant, Simulations for evaluation of kinetic methods in differential scanning calorimetry. Part 3: peak maximum evolution methods and isoconversional methods. Thermochim. Acta 293(1), 25–37 (1997)

    Article  CAS  Google Scholar 

  24. S.B. Sastri, T.M. Keller, M. Kenneth, Studies on cure chemistry of new acetylenic resins. Macromolecules 26(23), 6171–6174 (1993)

    Article  CAS  Google Scholar 

  25. C. Jubsilp, K. Punson, T. Takeichi et al., Curing kinetics of benzoxazine-epoxy copolymer investigated by non-isothermal differential scanning calorimetry. Polym. Degrad. Stab. 95(6), 918–924 (2010)

    Article  CAS  Google Scholar 

  26. H.L. Friedman, Kinetics of thermal degradation of char-forming plastics from thermogravimetry. J. Polym. Sci. Part C Polym. Symp. 6(1), 183–195 (1964)

    Article  Google Scholar 

  27. L. Ke, D. Hu, Y. Lu et al., Copolymerization of maleimide-based benzoxazine with styrene and the curing kinetics of the resultant copolymer. Polym. Degrad. Stab. 97(2), 132–138 (2012)

    Article  CAS  Google Scholar 

  28. A.J. Bissette, S.P. Fletcher, Mechanisms of autocatalysis. Angew. Chem. Int. Ed. 52(49), 12800–12826 (2013)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledged the financial support of the National Nature Science Foundation of China (Nos. 51477002, 51303005), the Educational Commission of Anhui Province of China (Nos. KJ2013A087 and KJ2013A095) and the Doctor Foundation of the Anhui University of Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dexin Tan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, D., Wu, X., Wang, Y. et al. Synthesis, characterization and curing behavior of methyl-tri(phenylethynyl)silane. Res Chem Intermed 42, 4669–4681 (2016). https://doi.org/10.1007/s11164-015-2307-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-015-2307-8

Keywords

Navigation