Skip to main content
Log in

Design of (2Z)-2-cyano-2-[2-[(E)-2-[5-[(E)-2-(4-dimethylaminophenyl)vinyl]-2-thienyl]vinyl]pyran-4-ylidene]acetic acid derivatives as D-π-A dye sensitizers in molecular photovoltaics: a density functional theory approach

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

The use of computational methods such as density functional theory (DFT) in material design has attracted considerable attention aimed at achieving efficient dye-sensitized solar cells (DSSCs). A series of novel (2Z)-2-cyano-2-[2-[(E)-2-[5-[(E)-2-(4-dimethylaminophenyl)vinyl]-2-thienyl]vinyl]pyran-4-ylidene]acetic acid derivatives were simulated using DFT and time-dependent DFT for calculations of molecular properties, electronic properties, optical properties, population analysis, global reactivity indices and light harvesting efficiency (LHE). The results showed that incorporation of an F/CH3 substituent on the acceptor unit increased/decreased the charge density on the acceptor unit, thereby increasing/lowering its tendency to accept electrons from the donor unit through a π-conjugated linker due to the electron-withdrawing/electron-donating effect of F/CH3; this ultimately increased/decreased the highest occupied molecular orbital and lowest occupied molecular orbital (HOMO–LUMO) energy band gap (Eg). The para-amino substituents on the donor unit drastically increased the natural bond orbital (NBO) charges of both the donor and acceptor units of the dyes, i.e. para-CH3 < para-NH2 < para-N(CH3)2; this agreed well with the ordering of the band gap. Generally, dyes with para-N(CH3)2 on the donor subunit have longer light absorption wavelengths, a low Eg and a high LHE, which could lead to enhancement of the photocurrent and charge transfer in DSSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. J. Bisquert, D. Cahen, G. Hodes, S. Ruhle, A. Zaban, J. Phys. Chem. 108, 8106 (2004)

    Article  CAS  Google Scholar 

  2. B. O’regan, M. Grätzel, Nature 353, 737 (1991)

    Article  Google Scholar 

  3. I. Chung, B. Lee, J. He, R.P.H. Chang, M.G. Kanatzids, Nature 485, 486 (2012)

    Article  CAS  Google Scholar 

  4. M. Gratzel, Photochem. Photobiol. 4, 145 (2003)

    Article  CAS  Google Scholar 

  5. M.K. Nazeeruddin, C. Klein, P. Liska, M. Gratzel, Chem. Rev. 249, 1460 (2005)

    CAS  Google Scholar 

  6. N. Vlachopoulos, P. Liska, J. Augustynski, M. Grätzel, J. Am. Chem. Soc. 110, 1216 (1988)

    Article  CAS  Google Scholar 

  7. K. Kalyanasundaram, M. Grätzel, Coord. Chem. Rev. 177, 347 (1998)

    Article  CAS  Google Scholar 

  8. A. Hagfeldt, M. Grätzel, Acc. Chem. Res. 33, 269 (2000)

    Article  CAS  Google Scholar 

  9. H. Kafafy, H. Wu, M. Peng, H. Hu, K. Yan, R.M. El-Shishtawy, D. Zou, Int. J. Photoenergy (2014). doi:10.1155/2014/548914

    Google Scholar 

  10. Z.S. Wang, Y. Cui, K. Hara, Y. Dan-oh, C. Kasada, A. Shinpo, Adv. Mater. 19, 1138 (2007)

    Article  CAS  Google Scholar 

  11. A. Burke, L. Schmidt-Mende, S. Ito, M. Gratzel, Chem. Commun. 3, 234 (2007)

    Article  Google Scholar 

  12. W.H. Howie, F. Claeyssens, H. Miura, L.M. Peter, J. Am. Chem. Soc. 130, 1367 (2008)

    Article  CAS  Google Scholar 

  13. R.M. El-Shishtawy, M.A. Abdullah, G.A. Saadullah, A.K.E. Shaaban, J. Mol. Model. (2014). doi:10.1007/s00894-014-2241-5

    Google Scholar 

  14. Y. Numata, A. Islam, H. Chen, L. Han, Energy Environ. Sci. 5, 8548 (2012)

    Article  CAS  Google Scholar 

  15. S. Ahmad, E. Guillen, L. Kavan, M. Gratzel, M.K. Nazeeruddin, Energy Environ. Sci. 6, 3439 (2013)

    Article  CAS  Google Scholar 

  16. W. Zhu, Y. Wu, S. Wang, W. Li, X. Li, J. Chen, Z.-S. Wang, H. Tian, Adv. Funct. Mater. 21, 756 (2011)

    Article  CAS  Google Scholar 

  17. J. Tang, W. Wu, J. Hua, J. Li, X. Li, H. Tian, Energy Environ. Sci. 2, 982 (2009)

    Article  CAS  Google Scholar 

  18. B.-G. Kim, C.-G. Zhen, E.J. Jeong, J. Kieffer, J. Kim, Adv. Funct. Mater. 22, 1606–1612 (2012)

    Article  CAS  Google Scholar 

  19. B.-G. Kim, K. Chung, J. Kim, Chem. Eur. J. 19, 5220 (2013)

    Article  CAS  Google Scholar 

  20. W. Fan, D. Tan, W.-Q. Deng, Chem. Phys. Chem. 13, 2051 (2012)

    CAS  Google Scholar 

  21. C.K. Tai, Y.J. Chen, H.W. Chang, P.L. Yeh, B.C. Wang, Comput. Theor. Chem. 971, 42 (2011)

    Article  CAS  Google Scholar 

  22. H.W. Ham, Y.S. Kim, Thin Solid Films 518, 6558 (2010)

    Article  CAS  Google Scholar 

  23. C.-R. Zhang, Z.-J. Liu, Y.-H. Chen, Y.-Z. Wu, W. Feng, D.-B. Wang, Curr. Appl. Phys. 10, 77 (2010)

  24. T. Ruiz-Anchondo, N. Foore-Holguin, D. Glossman-Mitinik, Molecules. 493, 323 (2010)

  25. T. Liu, H.X. Zhang, X. Zhou, B.H. Xia, Eur. J. Inorg. Chem. 8, 1268 (2008)

  26. M.P. Balanay, D.H. Kim, J. Mol. Struct. (THEOCHEM) 910, 20 (2009)

    Article  CAS  Google Scholar 

  27. B.F. Minaev, V.B. Gleb, V.A. Minaeva, Dyes Pigments 92, 531 (2011)

    Article  Google Scholar 

  28. G.V. Baryshnikova, B.F. Minaeva, V.A. Minaeva, Z. Ning, Q. Zhang, Opt. Spektrosk. 112, 193 (2012)

    Google Scholar 

  29. B.F. Minaev, G.V. Baryshnikov, A.A. Slepets, Opt. Spektrosk. 112, 899 (2012)

    Article  Google Scholar 

  30. G.V. Baryshnikov, B.F. Minaev, E.V. Myshenko, V.A. Minaeva, Opt. Spektrosk. 115, 555 (2013)

    Article  Google Scholar 

  31. G.A. Samuel, P. Jason, P. Joshi, Q. Qiquan, Y. Youngjae, J. Photochem. Photobiol. A Chem. 224, 116 (2004)

    Google Scholar 

  32. T. Zhidan, L. Yunchang, T. Baozhu, Z.H. Jinlong, Res. Chem. Intermed. 30, 495 (2013)

    Google Scholar 

  33. J.H. Kim, H. Lee, Chem. Mater. 14, 2270 (2002)

    Article  CAS  Google Scholar 

  34. J.L.H. Xue, X. Gu, Z. Yang, B. Xu, W. Tian, J. Phys. Chem. C 113, 12911 (2009)

    Article  CAS  Google Scholar 

  35. Y.A. Son, S.Y. Gwon, S.Y. Lee, S.H. Kim, Spectrochim. Acta A Mol. Biomol. Spectrosc. 75, 225 (2010)

    Article  Google Scholar 

  36. E.K.U. Gross, J.F. Aobson, M. Petersilka, Top. Curr. Chem. 181, 81 (1996)

    Article  CAS  Google Scholar 

  37. M.E. Reda, A.M. Asiri, S.G. Aziz, S.A.K. Elroby, J. Mol. Model. 20, 2241 (2014)

    Article  Google Scholar 

  38. Y. Luo, D. Jonsson, P. Norman, K. Ruud, O. Vahtras, B. Minaev, H. Ågre, A. Rizzo, K.V. Mikkelsen, Int. J. Quantum Chem. 70, 219 (1998)

    Article  CAS  Google Scholar 

  39. F. Furche, K. Burke, Time-dependent density functional theory in quantum chemistry, in Annual reports in computational chemistry, vol. 1, ed. by A. Spellmeyer (Elsevier, Amsterdam, 2005), pp. 19–30

    Chapter  Google Scholar 

  40. A.D. Becke, J. Phys. Chem. 98, 5648 (1993)

    Article  CAS  Google Scholar 

  41. C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37, 785 (1988)

    Article  CAS  Google Scholar 

  42. D. Jacquemin, E.A. Perpète, I. Ciofini, C. Adamo, Acc. Chem. Res. 42, 326 (2008)

    Article  Google Scholar 

  43. M. Pastore, E. Mosconi, F. de Angelis, M. Gratzel, J. Phys. Chem. C 114, 7205 (2010)

    Article  CAS  Google Scholar 

  44. Spartan 14, Wavefunction, INC, Irvine CA 92612, USA

  45. M.K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphrybaker, E. Muller, P. Liska, N. Vlachopoulos, M. Gratzel, J. Am. Chem. Soc. 115, 6382 (1993)

    Article  CAS  Google Scholar 

  46. Y. Kurashige, T. Nakajima, S. Kurashige, K. Hirao, Y. Nishikitani, J. Phys. Chem. A 111, 5544 (2007)

    Article  CAS  Google Scholar 

  47. M.-W. Lee, J.-Y. Kim, H.J. Son, J.Y. Kim, B.-S. Kim, H. Kim, D.-K. Lee, K. Kim, D.-H. Lee, M.J. Ko, Sci. Rep. (2015). doi:10.1038/srep07711

    Google Scholar 

  48. C.-R. Zhang, L. Liu, J.-W. Zhe, N.-Z. Jin, Y. Ma, L.-H. Yuan, M.-L. Zhang, Y.-Z. Wu, Z.-J. Liu, H.-S. Chen, Int. J. Mol. Sci. 14, 5461 (2013)

    Article  CAS  Google Scholar 

  49. J. Preat, C. Michaux, D. Jacquemin, E.A. Perpete, J. Phys. Chem. C 113, 16821 (2009)

    Article  CAS  Google Scholar 

  50. Z. Zhou, H.V. Navangul, J. Phys. Org. Chem. 3, 784 (1990)

    Article  CAS  Google Scholar 

  51. T. Koopmans, Physica 1, 104 (1934)

    Article  Google Scholar 

  52. R.G. Parr, L. Szentpaly, S. Liu, J. Am. Chem. Soc. 121, 1922 (1999)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Banjo Semire.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Semire, B., Oyebamiji, A. & Odunola, O.A. Design of (2Z)-2-cyano-2-[2-[(E)-2-[5-[(E)-2-(4-dimethylaminophenyl)vinyl]-2-thienyl]vinyl]pyran-4-ylidene]acetic acid derivatives as D-π-A dye sensitizers in molecular photovoltaics: a density functional theory approach. Res Chem Intermed 42, 4605–4619 (2016). https://doi.org/10.1007/s11164-015-2303-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-015-2303-z

Keywords

Navigation