Skip to main content
Log in

Synthesis, characterization and electrochemical performance of a new imidazoline derivative as an environmentally friendly corrosion and scale inhibitor

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

A new imidazoline derivative, {[(benzimidazol-2-ylmethyl)imino]bis(methylene)} bis(phosphonicacid), named as BMIBMBPA, was synthesized as an environmentally friendly corrosion and scale inhibitor. The performance of BMIBMBPA for carbon steel in cooling tower water was evaluated using weight loss, electrochemical measurements and a scale test and compared to that of sodium tungstate. The optimum concentration of BMIBMBPA was measured to be 40 mg/L and a much higher value, even at lower inhibition efficiencies, was determined for sodium tungstate. The electrochemical measurements demonstrated that BMIBMBPA acts as a mixed-type corrosion inhibitor. Surface analyses revealed adsorption of BMIBMBPA and scale inhibition through disruption in growth of precipitates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. N. Dkhireche, A. Dahami, A. Rochdi, J. Hmimou, R. Touir, M. Ebn Touhami, M. El Bakri, A. El Hallaoui, A. Anouar, H. Takenouti, J. Ind. Eng. Chem. 19, 1996 (2013)

    Article  CAS  Google Scholar 

  2. J.C. Kloppers, D.G. Kroger, J. Eng. Gas Turb. Power 127, 1 (2005)

    Article  CAS  Google Scholar 

  3. H.R. Goshayshi, J.F. Missenden, Appl. Therm. Eng. 20, 69 (2000)

    Article  CAS  Google Scholar 

  4. N. Milosavljevic, P. Heikkila, Appl. Therm. Eng. 21, 899 (2001)

    Article  CAS  Google Scholar 

  5. M. Lemouari, M. Boumaza, I.M. Mujtaba, Appl. Therm. Eng. 27, 902 (2007)

    Article  CAS  Google Scholar 

  6. G.F. Cortinovis, J.L. Paiva, T.W. Song, J.M. Pinto, Energy Convers. Manage. 50, 2200 (2009)

    Article  Google Scholar 

  7. Y. Yao, Z.W. Lian, Z.J. Hou, X.J. Zhou, Appl. Therm. Eng. 24, 2303 (2004)

    Article  Google Scholar 

  8. M.S. Soylemez, Energy Convers. Manage. 45, 2335 (2004)

    Article  Google Scholar 

  9. T. Muangnoi, W. Asvapoositul, S. Wongwises, Appl. Therm. Eng. 27, 910 (2007)

    Article  CAS  Google Scholar 

  10. A. Ataei, M.H. Panjshahi, M. Gharaie, Trans. Can. Soc. Mech. Eng. 32, 499 (2008)

    Google Scholar 

  11. M. Lemouari, M. Boumaza, Int. J. Therm. Sci. 49, 2049 (2010)

    Article  Google Scholar 

  12. D. Sarada Kalyani, S. Srinivasa Rao, M. Sarath Babu, B.V. Appa Rao, B. Sreedhar, Res. Chem. Intermed. 23, 367 (2014)

    Google Scholar 

  13. D. Wallinder, I. Odnevall Wallinder, C. Leygraf, Corrosion 59, 220 (2003)

    Article  CAS  Google Scholar 

  14. H. Chengjun, T. Zhipeng, Z. Bingru, L. Yu, C. Xi, W. Meijing, L. Fengting, Ind. Eng. Chem. Res. 54, 1971 (2015)

    Article  Google Scholar 

  15. B.R. Zhang, L. Zhang, F.T. Li, W. Hu, P.M. Hannam, Corros. Sci. 52, 3383 (2010)

    Google Scholar 

  16. T.Y. Soror, Open Corros. J. 2, 45 (2009)

    Article  CAS  Google Scholar 

  17. U.R. Evans, J. Chem. Soc. 127, 1020 (1927)

    Article  Google Scholar 

  18. P. Hoar, U.R. Evans, J. Chem. Soc. 134, 2476 (1932)

    Article  Google Scholar 

  19. S.M. Abd El Haleem, S. Abd El Wanees, E.E. Abd El Aal, A. Diab, Corros. Sci. 52, 292 (2010)

    Article  CAS  Google Scholar 

  20. W.D. Robertson, J. Electrochem. Soc. 98, 94 (1950)

    Article  Google Scholar 

  21. A. El-Sayed, J. Appl. Electrochem. 27, 193 (1997)

    Article  CAS  Google Scholar 

  22. C. Fiaud, A. Harch, D. Mallouh, M. Tzinmann, Corros. Sci. 35, 1437 (1993)

    Article  Google Scholar 

  23. E.M. Sherif, J. Ind. Eng. Chem. 19, 1884 (2013)

    Article  CAS  Google Scholar 

  24. G. Banerjee, S.N. Malhotra, Corrosion 48, 10 (1992)

    Article  CAS  Google Scholar 

  25. L. Guo, S.T. Zhang, T.M. Lv, W.J. Feng, Res. Chem. Intermed. 41, 3729 (2015)

    Article  CAS  Google Scholar 

  26. I.B. Obot, S.A. Umoren, Z.M. Gasem, R. Suleiman, B. El-Ali, J. Ind. Eng. Chem. 21, 1328 (2015)

    Article  CAS  Google Scholar 

  27. Y.I. Kuznetsov, L.P. Kazansky, Russ. Chem. Rev. 77, 219 (2008)

    Article  CAS  Google Scholar 

  28. N. Kovacevic, A. Kokalj, Corros. Sci. 53, 909 (2011)

    Article  CAS  Google Scholar 

  29. I. Danaee, M. Gholami, M. Rashvand Avei, M.H. Maddahy, J. Ind. Eng. Chem. 26, 81 (2015)

    Article  CAS  Google Scholar 

  30. H.K. Moudgil, S. Yadav, R.S. Chaudhary, D. Kumar, J. Appl. Electrochem. 39, 1339 (2009)

    Article  CAS  Google Scholar 

  31. M. Prabakaran, S. Ramesh, V. Periasamy, Res. Chem. Intermed. 39, 3507 (2013)

    Article  CAS  Google Scholar 

  32. S.J. Dyer, C.E. Anderson, G.M. Graham, J. Pet. Sci. Eng. 43, 259 (2004)

    Article  CAS  Google Scholar 

  33. B. Nowack, Water Res. 37, 2533 (2003)

    Article  CAS  Google Scholar 

  34. B. Mosayebi, M. Kazemeini, A. Badakhshan, Br. Corros. J. 37, 217 (2002)

    Article  CAS  Google Scholar 

  35. J.B. Lumsden, Z. Szklarska-Smialowska, Corrosion 34, 169 (1978)

    Article  CAS  Google Scholar 

  36. C. Monticelli, F. Zucchi, G. Brunoro, G. Trabanelli, J. Appl. Electrochem. 27, 325 (1997)

    Article  CAS  Google Scholar 

  37. G. Mu, X. Li, Q. Qu, J. Zhou, Corros. Sci. 48, 445 (2006)

    Article  CAS  Google Scholar 

  38. Q. Qu, L. Li, W. Bai, S. Jiang, Z. Ding, Corros. Sci. 51, 2423 (2009)

    Article  CAS  Google Scholar 

  39. J.M. Abd El-Kader, A.A. El-Warraky, A.M. Abd El-Aziz, Br. Corros. J. 33, 152 (1998)

    Article  CAS  Google Scholar 

  40. T.J. Lane, I. Nakagawa, J.L. Walter, A.J. Kandathil, Inorg. Chem. 1, 267 (1962)

    Article  CAS  Google Scholar 

  41. F.A. Miller, C.H. Wilkins, Anal. Chem. 24, 1253 (1952)

    Article  CAS  Google Scholar 

  42. B.V. Appa Rao, K. Christina, Indian J. Chem. Technol. 13, 275 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sina Borghei.

Appendix: NMR, FTIR spectroscopy and elemental analysis of the synthesized corrosion inhibitor

Appendix: NMR, FTIR spectroscopy and elemental analysis of the synthesized corrosion inhibitor

P-NMR

31PNMR (202.46 MHz, DMSO): δ = 20.17 ppm.

Interpretation

The resultant peak at δ = 20.17 ppm indicates the presence of phosphorous atoms only in one functional group (phosphonate functional group) in the synthesized product.

H-NMR

1HNMR (500.13 MHz, DMSO): δ = [5.043 (s, 1H, NH), 7.34–7.53 (m, 4H, Ar–H), 10.83 (s, 4H, OH), 3.45 (d, 2JP,H = 12.7 Hz, 4H, CH2).]

Interpretation

5043 (s, 1H, NH) represents magnetic resonance of hydrogen atom in an NH couple. Therefore, the presence of one NH couple is verified. Magnetic resonances of hydrogen atoms in the benzene group are located in the δ = 7–8 ppm domain, so 7.34–7.53 (m, 4H, Ar–H) relates to four hydrogen atoms to four carbon atoms in the benzene functional group in the chemical structure of the synthesized product. Four hydrogen atoms in the hydroxyl functional group (OH) were identified with displacement of their nucleus within 10.83 ppm. The interference of magnetic resonance of the phosphorous atom (in the phosphonate functional group) in the hydrogen atom (in the CH2 couple) leads to nuclear fission of the hydrogen atom, indicated by 3.45 (d, 2JP,H = 12.7 Hz, 4H, CH2). This incidence took place two times (2JP,H) for four hydrogen atoms (4H) in two CH2 couples. This can be one proof for the chemical bond of phosphorous and carbon atoms (P–C bond).

C-NMR

13CNMR (125.77 MHz, DMSO): δ = [56.10 (d, 2JP,C = 146.7 Hz, CH2), 81.92 (s), 111.6 (s), 127.89 (s), 139.38 (s).]

Interpretation

81.92 (s), 111.6 (s) and 127.89 (s) relate to carbon atoms located in three different functional groups (four carbon atoms in the benzene ring, two residual carbon atoms of the benzene functional group which are located at the interface of the benzene ring and the adjacent amin group, and the carbon atom surrounded by three nitrogen atoms). 56.10 (d, 2JP,C = 146.7 Hz, CH2) means interference of the magnetic resonance of phosphorous atom nucleus with that of the carbon atom nucleus in the P–C bond, and is another demonstration for the chemical bond of phosphorous and carbon atoms in the synthesized compounds.

FTIR spectroscopy

The adsorption reflection of FTIR spectra for the synthesized compound are shown in Fig. 12. The indication of P–C, P–OH, P=O, C–N, C=C, C=N, C–H and N–H stretching are located in 750–900, 900–1200, 1100–1275, 1020–1250, 1400–1600, 1600–1800, 2400–2550 and 3200–3500 cm−1 regions, respectively. As a result, the peaks at 790.59, 937.85, 1161.66, 1072.14, 1481.72, 1610.59, 2311.16 and 3400.90 cm−1 are related to them, respectively. Therefore, the presence of P–C, P–OH, P=O, C–N, C=C, C=N, C–H and N–H bonds are verified.

Fig. 12
figure 12

The adsorption reflection of FTIR spectra for the synthesized compound

Elemental analysis

Elemental analysis of the synthesized compound indicated C at 35.58, H at 4.01 and N at 13.03 which has an acceptable conformity to the one calculated through theoretical elemental analysis of C10H15N3O6P2 which is C at 33.64, H at 4.05 and N at 13.08.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borghei, S., Dehghanian, C., Yaghoubi, R. et al. Synthesis, characterization and electrochemical performance of a new imidazoline derivative as an environmentally friendly corrosion and scale inhibitor. Res Chem Intermed 42, 4551–4568 (2016). https://doi.org/10.1007/s11164-015-2296-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-015-2296-7

Keywords

Navigation