Skip to main content
Log in

Hydrothermal synthesis and photocatalytic property of Bi2MoO6/ZnO composite material

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

The Bi2MoO6/ZnO composite has been successfully synthesized by a hydrothermal method. As-prepared Bi2MoO6, ZnO, Bi2MoO6/ZnO samples were characterized by X-ray diffraction, scanning electron microscopy, UV–visible and Raman spectroscopy. The results show that the crystals of different substances grow independently. The highly crystalline ZnO with a hexagonal wurtzite structure is embedded into the Bi2MoO6 matrix of a bismuth-layer orthorhombic structure. The aggregation of Bi2MoO6 particles are greatly reduced and particles with a small grain size can be finally obtained with the addition of ZnO. This morphology provides the additional surface area and thus permits the Bi2MoO6 particles to contact with the ZnO. The band gap of Bi2MoO6/ZnO composite material is estimated as 2.25 eV. The low band gap is attributed to the morphology and microstructure of Bi2MoO6/ZnO. Compared to pure ZnO, the valence band is widened and the conduction band is elevated, so the Bi2MoO6/ZnO composite has a narrowed band gap and shows enhanced photocatalytic activity for methyl orange photo-decomposition under sunlight irradiation. This feature may broaden the application scope of Bi2MoO6/ZnO composite, for example as an efficient photocatalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. X.F. Zhang, Y. Gong, X.L. Dong, X.X. Zhang, C. Ma, F. Shi, J. Mater. Phys. Chem. 136, 472–476 (2012)

    Article  CAS  Google Scholar 

  2. P.V. Kamat, J. Phys. Chem. C 111, 2834–2860 (2007)

    Article  CAS  Google Scholar 

  3. H.G. Yang, C.H. Sun, S.Z. Qiao, J. Zou, G. Liu, S.C. Smith, H.M. Cheng, G.Q. Lu, Nature 453, 638–641 (2008)

    Article  CAS  Google Scholar 

  4. P.F. Wang, A.H. Yan, C. Wang, J. Hou, J. Qian, Carbon 50, 5656–5664 (2012)

    Google Scholar 

  5. J.W. Ng, J.H. Pan, D.D. Sun, J. Mater. Chem. 21, 11844–11853 (2011)

    Article  CAS  Google Scholar 

  6. J.W. Tang, Z.G. Zou, J.H. Ye, Catal. Lett. 92, 53–56 (2004)

    Article  CAS  Google Scholar 

  7. M. Oshikiri, M. Boero, J.H. Ye, Z.G. Zou, G.J. Kido, Chem. Phys. 117, 7313–7318 (2002)

    CAS  Google Scholar 

  8. F. Gao, X. Chen, K. Yin, S. Dong, Z. Ren, F. Yuan, T. Yu, Z.G. Zou, J.M. Liu, Adv. Mater. 19, 2889–2892 (2007)

    Article  CAS  Google Scholar 

  9. C. Borgohain, K.K. Senapati, K.C. Sarma, P. Phukan, J. Mol. Catal. A: Chem. 363–364, 495–500 (2012)

    Article  Google Scholar 

  10. Y. Huang, Z.H. Ai, W.K. Ho, M.J. Chen, S.C. Lee, J. Phys. Chem. C 114, 6342–6351 (2010)

    Article  CAS  Google Scholar 

  11. J.L. Gole, J.D. Stout, C. Burda, Y.B. Lou, X.B. Chen, J. Phys. Chem. B 108, 1230–1240 (2004)

    Article  CAS  Google Scholar 

  12. L.L. Zhang, J.X. Long, W.W. Pan, S.Y. Zhou, J.W. Zhu, Y.J. Zhao, X. Wang, G.Z. Cao, J. Mater. Phys. Chem. 136, 897–902 (2012)

    Article  CAS  Google Scholar 

  13. J. Bi, L. Wu, J. Li, Z. Li, X. Wang, X. Fu, Acta Mater. 55, 4699–4705 (2007)

    Article  CAS  Google Scholar 

  14. Y. Shimodaira, H. Kato, H. Kobayashi, A. Kudo, J. Phys. Chem. B 110, 17790–17797 (2006)

    Article  CAS  Google Scholar 

  15. J.L. Long, S.C. Wang, H.J. Chang, B.B. Zhao, B.T. Liu, Y.G. Zhou, W. Wei, X.X. Wang, L. Huang, W. Huang, Small 10, 2791–2795 (2014)

    Article  CAS  Google Scholar 

  16. L. Zhou, M.M. Yu, J. Yang, Y.H. Wang, C.Z. Yu, J. Phys. Chem. C 114, 18812–18818 (2010)

    Article  CAS  Google Scholar 

  17. M. Maczka, W. Paraguassu, L. Macalik, P.T.C. Freire, J. Hanuzal, F.J. Mendes, J. Phys.: Condens. Matter 23, 045401–045408 (2011)

    CAS  Google Scholar 

  18. Z.W. Dong, C.F. Zhang, H. Deng, G.J. You, S.X. Qian, Mater. Chem. Phys. 99, 160–167 (2006)

    Article  CAS  Google Scholar 

  19. M. Butler, J. Appl. Phys. 48, 1914–1920 (1977)

    Article  CAS  Google Scholar 

  20. D. Xie, L. Chang, F.X. Wang, G.H. Du, B.S. Xu, J. Alloys Compd. 545, 176–181 (2012)

    Article  CAS  Google Scholar 

  21. L. Zhang, W. Wang, J. Yang, Z. Chen, W. Zhang, L. Zhou, S. Liu, Appl. Catal. A 308, 105–110 (2006)

    Article  CAS  Google Scholar 

  22. X. Zhang, Z. Ai, F. Jia, L. Zhang, X. Fan, B.Z. Zou, Mater. Chem. Phys. 103, 162–167 (2007)

    Article  CAS  Google Scholar 

  23. C. Zhang, Y. Zhu, Chem. Mater. 17, 3537–3545 (2005)

    Article  CAS  Google Scholar 

  24. S. Cho, J.W. Jang, H.J. Park, D.W. Jung, A. Jung, J.S. Lee, K.H. Lee, RSC Adv. 2, 566–572 (2012)

    Article  CAS  Google Scholar 

  25. Y.Q. Yang, G.H. Du, X. Xin, B.S. Xu, J. Appl. Phys. A 104, 1229–1235 (2011)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Natural Science Foundation of China (Grant Nos. 50632030 and 21471159), the fund of the State Key Laboratory of Solidification Processing in NWPU of China (Grant No SKLSP201406), and the Science College Postdoctoral Science Foundation project of China (Grant Nos. 2013BSKYQD06, 2013BSKYQD04).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoxia Tian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, X., Qu, S., Wang, B. et al. Hydrothermal synthesis and photocatalytic property of Bi2MoO6/ZnO composite material. Res Chem Intermed 41, 7273–7283 (2015). https://doi.org/10.1007/s11164-014-1811-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-014-1811-6

Keywords

Navigation