Skip to main content
Log in

Combinations of N, P-type semiconductors and conductor (γ-Fe2O3, polypyrrole and silver) as different nanostructural nanocomposites for adsorptive and photocatalytic application

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Several hetero-junction nanocomposites consisting of N- and P-type semiconductors and conductor (γ-Fe2O3, polypyrrole and silver) were prepared here by radical polymerization and redox method for adsorptive and photocatalytic applications. The obtained materials were characterized by means of X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray spectroscopy, Infrared spectroscopy, and ultraviolet–visible absorption measurement. The results indicated that the average size of γ-Fe2O3 nanoparticles from all the samples is approximately 26.5 nm, the Ag nano-crystal with a average size of 19.2 nm attached on the interface of γ-Fe2O3 and the polypyrrole or polypyrrole surface and has good dispersivity. The adsorptive and photocatalytic activities of the above composites were studied before and after 2 h photodegradation of Methyl Orange and Orange II. Considering the adsorptive and photocatalytic performances as a whole, Fe2O3/polypyrrole composites based on the P–N-type hetero-junction exhibited the highest removal ability towards azo dyes compared with all the other as-prepared samples, and the total removal ratios towards Methyl Orange and Orange II were 84.3 and 92.6 %, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 2

Similar content being viewed by others

References

  1. M.R. Hoffmann, S.T. Martin, W.Y. Choi, D.W. Bahnemann, Chem. Rev. 95, 69–96 (1995)

    Article  CAS  Google Scholar 

  2. D. Ravelli, D. Dondi, M. Fagnoni, A. Albini, Photocatalysis. Chem. Soc. Rev. 38, 1999–2011 (2009)

    Article  CAS  Google Scholar 

  3. K. Kabra, R. Chaudhary, R.L. Sawhney, Ind. Eng. Chem. Res. 43, 7683–7696 (2004)

    Article  CAS  Google Scholar 

  4. O. Carp, C.L. Huisman, A. Reller, Prog. Solid State Chem. 32, 33–177 (2004)

    Article  CAS  Google Scholar 

  5. U.I. Gaya, A.H. Abdullah, J. Photochem. Photobiol. C 9, 1–12 (2008)

    Article  CAS  Google Scholar 

  6. D. Robert, Catal. Today 122, 20–26 (2007)

    Article  CAS  Google Scholar 

  7. G. Li, K.A. Gray, Chem. Phys. 339, 173–187 (2007)

    Article  CAS  Google Scholar 

  8. S.A.K. Leghari, S. Sajjad, J. Chen, J. Zhang, Chem. Eng. J. 166, 906–915 (2011)

    Article  CAS  Google Scholar 

  9. Y. Chen, J.C. Crittenden, S. Hackney, Environ. Sci. Technol. 39, 1201–1208 (2005)

    Article  CAS  Google Scholar 

  10. E.V. Skorb, E.A. Ustinovich, A.I. Kulak, D.V. Sviridov, J. Photochem. Photobiol. A 193, 97–102 (2008)

    Article  CAS  Google Scholar 

  11. Z. Liu, D.D. Sun, P. Guo, J.O. Leckie, Nano Lett. 7, 1081–1085 (2007)

    Article  CAS  Google Scholar 

  12. T. Tatsuma, S. Saitoh, P. Ngaotrakanwiwat, Y. Ohko, A. Fujishima, Langmuir 18, 7777–7779 (2002)

    Article  CAS  Google Scholar 

  13. X. Fu, L.A. Clark, Q. Yang, M.A. Anderson, Environ. Sci. Technol. 30, 647–653 (1996)

    Article  CAS  Google Scholar 

  14. R. Brahimi, Y. Bessekhouad, A. Bouguelia, M. Trari, J. Photochem. Photobiol. A 186, 242–247 (2007)

    Article  CAS  Google Scholar 

  15. W. Siripala, A. Ivanovskaya, T.F. Jaramillo, B.S. Hyeon, E.W. McFarland, Sol. Energy Mater. Sol. Cells 77, 229–237 (2003)

    Article  CAS  Google Scholar 

  16. Y. Bessekhouad, D. Robert, J.V. Weber, Catal. Today 101, 315–321 (2005)

    Article  CAS  Google Scholar 

  17. B. Ohtani, S. Adzuma, S. Nishimoto, T. Kagiya, Polym. Degrad. Stab. 35, 53–60 (1992)

    Article  CAS  Google Scholar 

  18. S. Cho, W. Choi, J. Photochem. Photobiol. A 143, 221–228 (2001)

    Article  CAS  Google Scholar 

  19. D. Chowdhury, A. Paul, A. Chattopadhyay, Langmuir 21, 4123–4128 (2005)

    Article  CAS  Google Scholar 

  20. B. Muktha, G. Madras, T.N. Guru Row, U. Scherf, S. Patil, J. Phys. Chem. B 111, 7994–7998 (2007)

    Article  CAS  Google Scholar 

  21. J.L. Zhang, Y. Wang, H. Ji, Y.G. Wei, N.Z. Wu, B.J. Zuo, Q.L. Wang, J. Catal. 229, 114–118 (2005)

    Article  CAS  Google Scholar 

  22. O. Shekhah, W. Ranke, A. Schule, G. Kolios, R. Schlogl, Angew. Chem. Int. Ed. 42, 5760–5763 (2003)

    Article  CAS  Google Scholar 

  23. A.S.C. Brown, J.S.J. Hargreaves, B. Rijniersce, Catal. Lett. 53, 7–13 (1998)

    Article  CAS  Google Scholar 

  24. Y.N. Xia, Y.J. Xiong, B. Lim, S.E. Skrabalak, Angew. Chem. Int. Ed. 48, 60–103 (2009)

    Article  CAS  Google Scholar 

  25. C. Pacholski, A. Kornowski, H. Weller, Angew. Chem. Int. Ed. 43, 4774–4777 (2004)

    Article  CAS  Google Scholar 

  26. M. Gill, J. Mykytiuk, S. P. Armes, J. L. Edwards, T. Yeates, P. J. Moreland, C. Mollet, J. Chem. Soc., Chem. Commun. 108–109 (1992)

  27. F. Li, J.F. Wu, Q.H. Qin, Z. Li, X.T. Huang, Superlattice. Microst. 47, 232–240 (2010)

    Article  CAS  Google Scholar 

  28. G. Sivalingam, K. Nagaveni, M.S. Hegde, G. Madras, Appl. Catalysis. B 45, 23–38 (2003)

    Article  CAS  Google Scholar 

  29. C.G. Tian, W. Li, K. Pan, Q. Zhang, G.H. Tian, W. Zhou, H.G. Fu, J. Solid. State. Chem. 183, 2720–2725 (2010)

    Article  CAS  Google Scholar 

  30. Y.H. Zheng, L.R. Zheng, Y.Y. Zhan, X.Y. Lin, Q. Zheng, K.M. Wei, Inorg. Chem. 46, 6980–6986 (2007)

    Article  CAS  Google Scholar 

  31. H.S. Nalwa, Hand Book of Organic Conductive Molecules and Polymers: Conductive Polymers: Synthesis and Electrical Properties (Wiley, New York, 1997)

    Google Scholar 

  32. N.D. Phu, D.T. Ngo, L.H. Hoang, N.H. Luong, N. Chau, N.H. Hai, J. Phys. D Appl. Phys. 44, 345002 (2011)

    Article  Google Scholar 

  33. A.L. Linsebigler, G.Q. Lu, J.T. Yates, Chem. Rev. 95, 735–738 (1995)

    Article  CAS  Google Scholar 

  34. X.Z. Li, F.B. Li, Environ. Sci. Technol. 35, 2381–2387 (2001)

    Article  CAS  Google Scholar 

  35. C.D. Gu, C. Cheng, H.Y. Huang, T.L. Wong, N. Wang, T.Y. Zhang, Crystal Growth Design 9, 3278–3785 (2009)

    Article  CAS  Google Scholar 

  36. J. Ryu, W. Choi, Environ. Sci. Technol. 38, 2928–2933 (2004)

    Article  CAS  Google Scholar 

  37. H. Goto, Y. Hanada, T. Ohno, M. Matsumura, J. Catal. 225, 223–229 (2004)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the open research program of Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences (CUGNGM201315). The Research Fund of Hubei provincial Department of Education, China (Q20121102) and open research program of Research Center of Green manufacturing, Energy-saving and emission-reduction, Wuhan University of Science and Technology (B1201) are also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guanghui Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, Y., Gao, F., An, L. et al. Combinations of N, P-type semiconductors and conductor (γ-Fe2O3, polypyrrole and silver) as different nanostructural nanocomposites for adsorptive and photocatalytic application. Res Chem Intermed 41, 1741–1755 (2015). https://doi.org/10.1007/s11164-013-1308-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-013-1308-8

Keywords

Navigation