Skip to main content

Advertisement

Log in

Ultrasound-assisted facile and selective synthesis of azeto[2,1-d][1,5]benzothiazepines under solvent-free conditions and their biological activity

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

A facile, efficient and environmentally friendly heteroannulation protocol for the exclusive synthesis of medicinally important azeto[2,1-d][1,5]benzothiazepines 3 has been developed in the presence of 10 mol% K2CO3 under sonication. In comparison to conventional synthesis, where mixture of products such as 3, phenyl-N-acetyl-2-styrylbenzothiazole 4 and 1,3-oxazine derivative 5 were formed in several hours of heating, the present method provides several advantages including selective synthesis of 3 with simpler work-up procedure, higher yields in shorter reaction time and green aspects through the avoidance of toxic catalysts and solvents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Scheme 2

Similar content being viewed by others

Notes

  1. The H37Rv clinical isolate was obtained from the Institute of Microbial Technology, Surat, India. L.J. was used as the nutrient medium to grow and dilute the tested drug suspensions. The inoculum size for the strain test was adjusted to 1 mg/mL. A 2 mg/mL stock solution was prepared for each synthesized drug. DMSO (1%) was used as diluent/vehicle to obtain the desired concentration of drug to test on standard bacterial strains. In a primary screening, 500, 250, and 125 lg/mL concentrations of the synthesized drugs were used. The active synthesized drugs identified in this primary screening were then diluted to obtain 100, 50, 25, 12.5, 6.250, 3.125, and 1.5625 lg/mL concentrations, and further tested in a second set of dilutions against all microorganisms. The standard strain MTB H37Rv was retested with each new batch of medium. The minimum inhibitory concentration (MIC) was defined as the minimum concentration of compound required to inhibit 99% of bacterial growth. Vehicle and reference agents were used in every test as the negative and positive controls, and the assays were performed in duplicate.

References

  1. D.J. Newman, G.M. Cragg, J. Nat. Prod. 70, 461 (2007)

    Article  CAS  Google Scholar 

  2. J.W.H. Li, J.C. Vederas, Science 325, 161 (2009)

    Article  Google Scholar 

  3. K. Kumar, H. Waldmann, Angew. Chem. 121, 3272 (2009)

    Article  Google Scholar 

  4. R.A. Mane, D.B. Ingle, Indian J. Chem. 21B, 973 (1982)

    CAS  Google Scholar 

  5. K.P. Jadhav, D.B. Ingle, Indian J. Chem. 22B, 180 (1983)

    CAS  Google Scholar 

  6. A. Attia, O.I. Abdel-salam, M.H. Abo-Ghalia, A.E. Amr, Egypt. J. Chem. 38, 543 (1995)

    CAS  Google Scholar 

  7. R.J. Reddy, D. Ashok, P.N. Sarma, Indian J. Chem 32, 404 (1993)

    Google Scholar 

  8. K. Satyanarayana, M.N.A. Rao, Indian J. Pharm. Sci. 55, 230 (1993)

    CAS  Google Scholar 

  9. G. DeSarro, A. Chimirri, A. DeSarro, R. Gitto, S. Grasso, M. Zappala, Eur. J. Med. Chem. 30, 925 (1995)

    Article  CAS  Google Scholar 

  10. J.B. Bariwal, K.D. Upadhyay, A.T. Manvar, J.C. Trivedi, J.S. Singh, K.S. Jain, A.K. Shah, Eur. J. Med. Chem. 43, 2279 (2008)

    Article  CAS  Google Scholar 

  11. M.A. Raggi, R. Mandrioli, C. Sabbioni, V. Pucci, Curr. Med. Chem. 11, 279 (2004)

    Article  CAS  Google Scholar 

  12. B. Capuano, I.T. Crosby, E. Lloyd, J. Curr, Med. Chem. 9, 521 (2002)

    CAS  Google Scholar 

  13. J.M. Goldstein, Drugs Today 35, 193 (1999)

    Article  CAS  Google Scholar 

  14. H. Kugita, H. Inoue, M. Ikezaki, M. Konda, S. Takeo, Chem. Pharm. Bull. 19, 595 (1971)

    Article  CAS  Google Scholar 

  15. R. Budriesi, B. Cosimelli, P. Ioan, E. Carosati, M.P. Ugenti, R. Spisani, Curr. Med. Chem. 14, 279 (2007)

    Article  CAS  Google Scholar 

  16. M.M.T. Buckley, S.M. Grant, D. McTavish, E.M. Sorkin, Drugs 39, 757 (1990)

    Article  CAS  Google Scholar 

  17. H. Inoue, M. Konda, T. Hashiyama, H. Otsuka, K. Takahashi, M. Gaino, T. Date, K. Aoe, M. Takeda, S. Murata, H. Narita, T. Nagao, J. Med. Chem. 34, 675 (1991)

    Article  CAS  Google Scholar 

  18. T. Suzuki, H. Kurosawa, K. Naito, M. Otsuka, M. Ohashi, O. Takaiti, Eur. J. Pharmacol. 194, 195 (1991)

    Article  CAS  Google Scholar 

  19. P.D. Mehta, N.P.S. Sengar, A.K. Pathak, Eur. J. Med. Chem 45, 5541 (2010)

    Article  CAS  Google Scholar 

  20. R.B. Morin, M. Gorman (eds.), Chemistry and Biology of β-Lactam Antibiotics, vol. 1–3 (Academic Press, New York, 1982)

    Google Scholar 

  21. R. Southgate, S. Elson, Prog. Chem. Org. Natural Prod. 47, 1 (1985)

    CAS  Google Scholar 

  22. J. Xu, Mol. Divers. 9, 45 (2005)

    Article  Google Scholar 

  23. S. Pippich, H. Bartsch, T.J. Erker, Heterocycl. Chem. 34, 823 (1997)

    Article  CAS  Google Scholar 

  24. A. Szollosy, G. Kotovych, G. Toth, A. Levai, Can. J. Chem. 66, 279 (1988)

    Article  CAS  Google Scholar 

  25. H. Staudinger, Liebigs Ann. 356, 51 (1907)

    Article  CAS  Google Scholar 

  26. L. Kuznetsova, M.I. Ungureanu, A. Pepe, I. Zanardi, X. Wu, I. Ojima, J. Fluorine Chem. 125, 415 (2004)

    Article  Google Scholar 

  27. I. Ojima, J.R. McCarthy, J.T. Welch, Biomedical Frontiers of Fluorine Chemistry (American Chemical Society, New York, 1996)

    Book  Google Scholar 

  28. P. Kirsch, Modern Fluoroorganic Chemistry: Synthesis, Reactivity and Applications (Wiley-VCH, New York, 2004)

    Book  Google Scholar 

  29. M. Abid, B. Torok, Adv. Synth. Catal. 347, 1797 (2005)

    Article  CAS  Google Scholar 

  30. S.C. O’Hagan, S.L. Cobb, J.T.G. Hamilton, D. Cormac, C.D. Murphy, Nature 416, 279 (2002)

    Article  Google Scholar 

  31. P. Yan, B. Torok, G.K.S. Prakash, G.A. Olah, Synlett 4, 527 (2003)

    Google Scholar 

  32. M. Doble, A. Kumar, Green Chemistry and Engineering (Elsevier, Amsterdam, 2007)

    Google Scholar 

  33. J.T. Li, Y. Yin, L. Li, M.X. Sun, Ultrason. Sonochem. 17, 11 (2010)

    Article  Google Scholar 

  34. T.J. Mason, D. Peer, Practical Sonochemistry, 2nd edn. (Ellis Horwood, London, 2002)

    Book  Google Scholar 

  35. E. Ruiz, H. Rodriguez, J. Coro, E. Salfran, M. Suarez, R.M. Alvarez, N. Martin, Ultrason. Sonochem. 18, 32 (2011)

    Article  CAS  Google Scholar 

  36. T.J. Manson, Chem. Soc. Rev. 26, 443 (1997)

    Article  Google Scholar 

  37. M.M. Mojtahedi, M. Javadpour, M.S. Abaee, Ultrason. Sonochem. 15, 828 (2008)

    Article  CAS  Google Scholar 

  38. G. Cravotto, P. Cintas, Chem. Soc. Rev. 35, 180 (2006)

    Article  CAS  Google Scholar 

  39. G. Nagendrappa, Resonance 7, 59 (2002)

    Article  CAS  Google Scholar 

  40. K. Tanaka, F. Toda, Chem. Rev. 100, 1025 (2000)

    Article  CAS  Google Scholar 

  41. K. Tanaka, Solvent-Free Organic Synthesis (Vch Verlagsgesellschaft Mbh, Weinheim, 2003)

    Book  Google Scholar 

  42. A. Dandia, K. Arya, Biorg. Med. Chem. Lett. 18, 114 (2008)

    Article  Google Scholar 

  43. A. Dandia, R. Singh, S. Khaturia, J. Fluorine Chem. 128, 524 (2007)

    Article  CAS  Google Scholar 

  44. A. Dandia, M. Sati, K. Arya, P. Sarawagi, A. Loupy, Arkivoc. 9, 105 (2005)

    Article  Google Scholar 

  45. A. Dandia, M. Sati, K. Arya, A. Loupy, J. Sulfur Chem. 25, 283 (2004)

    Article  CAS  Google Scholar 

  46. A. Dandia, M. Sati, K. Arya, A. Loupy, Heterocycles 3, 563 (2003)

    Google Scholar 

  47. A. Dandia, M. Sati, K. Arya, R. Sharma, A. Loupy, Chem. Pharm. Bull. 50, 1137 (2003)

    Article  Google Scholar 

  48. A. Dandia, M. Sati, K. Arya, A. Loupy, Green Chem. 4, 599 (2002)

    Article  CAS  Google Scholar 

  49. A. Dandia, A.K. Laxkar, R. Singh, Tetrahedron Lett. 53, 3012 (2012)

    Article  CAS  Google Scholar 

  50. A. Dandia, R. Singh, S. Bhaskaran, Green Chem. 13, 1852 (2011)

    Article  CAS  Google Scholar 

  51. A. Dandia, V. Parewa, A.K. Jain, K.S. Rathore, Green Chem. 13, 2135 (2011)

    Article  CAS  Google Scholar 

  52. A. Dandia, R. Singh, S. Bhaskaran, Ultrason. Sonochem. 17, 399 (2010)

    Article  CAS  Google Scholar 

  53. A. Dandia, A.K. Jain, D.S. Bhati, Tetrahedron Lett. 52, 5333 (2011)

    Article  CAS  Google Scholar 

  54. A. Weissler, J. Chem. Educ. 25, 28 (1948)

    Article  CAS  Google Scholar 

  55. V. Migrdichian, Organic Synthesis (Reinhold Publishing Corporation, New York, 1960)

    Google Scholar 

  56. U.C. Pant, M. Upreti, S. Pant, A. Dandia, G.K. Patnaik, A.K. Goel, Phosphorus Sulfur Silicon 126, 193 (1997)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial assistance from the C.S.I.R. [02(0143)/13/EMR-II], New Delhi is gratefully acknowledged. We are also grateful to the Central Drug Research Institute (CDRI), Lucknow, for the spectral analyses and elemental analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anshu Dandia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dandia, A., Singh, R. & Gupta, S.L. Ultrasound-assisted facile and selective synthesis of azeto[2,1-d][1,5]benzothiazepines under solvent-free conditions and their biological activity. Res Chem Intermed 41, 1559–1569 (2015). https://doi.org/10.1007/s11164-013-1292-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-013-1292-z

Keywords

Navigation