Skip to main content
Log in

Dependence of temperature on the corrosion protection properties of vanillin and its derivative, HMATD, towards copper in nitric acid: theoretical and electroanalytical studies

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

The interaction and corrosion protection properties of vanillin and one of its derivatives, HMATD, on copper in nitric acid (0.5, 1, and 1.5 M) at different temperatures have been studied by polarization, electrochemical impedance spectroscopy, adsorption, surface studies, and computational calculations. Polarization studies showed that these molecules act as mixed type inhibitors. Both vanillin and its derivative HMATD act as effective inhibitors for copper in HNO3 (0.5, 1, and 1.5 M) at different temperatures (30, 35, and 40 °C). At room temperature, HMATD was found to be a more effective inhibitor than vanillin, whereas at higher temperatures, vanillin was found to be more effective. From spectroscopic and pH measurements, it is evident that vanillin has undergone a chemical change at higher temperatures in the presence of HNO3. The mechanism involves adsorption of inhibitor molecules on the metal surface and this process obeys the Langmuir isotherm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. R. Vera, G. Layana, J.I. Gardiazabal, Bol. Soc. Chil. Quim. 40, 149 (1995)

    CAS  Google Scholar 

  2. T. Hoepner, S. Lattemann, Desalination. 152, 133 (2003)

    Article  CAS  Google Scholar 

  3. E.M. Sherif, S.M. Park, J. Electrochem. Soc. 152, B428 (2005)

    Article  CAS  Google Scholar 

  4. J. Qu, X. Guo, Z. Chen, Mater. Chem. Phys. 93, 388 (2005)

    Article  CAS  Google Scholar 

  5. M.M. Sing, R.B. Rastogi, B.N. Upadhay, M. Yadav, Mater. Chem. Phys. 80, 283 (2003)

    Article  Google Scholar 

  6. N. Bellakhal, M. Dachraoui, Mater. Chem. Phys. 85, 366 (2004)

    Article  CAS  Google Scholar 

  7. H.P. Lee, K. Nobe, J. Electrochem. Soc. 133, 2035 (1986)

    Article  CAS  Google Scholar 

  8. C. Wang, S. Chen, S. Zhao, J. Electrochem. Soc. 151, B11 (2004)

    Article  CAS  Google Scholar 

  9. M. Kendig, S. Jeanjaquet, J. Electrochem. Soc. 149, B47 (2002)

    Article  CAS  Google Scholar 

  10. N.A. Al-Mobarak, K.F. Khaled, M.N.H. Hamed, K.M. Abdel-Azim, N.S. Abdelshafi, Arab. J. Chem. 3, 233 (2010)

    Article  CAS  Google Scholar 

  11. R. Sabino, D.S. Azambuja, R.S. Goncalves, J. Solid State Electrochem. 14, 1255 (2010)

    Article  CAS  Google Scholar 

  12. F.B. Ravari, A. Dadgarinezhad, I. Shekhshoaei, G. U. J. Sci. 22, 175 (2009)

    Google Scholar 

  13. R. Rosliza, A. Noraaini, W.B. Wan Nik, J. Appl. Electrochem. 40, 833 (2010)

    Article  CAS  Google Scholar 

  14. S. John, J. Joy, M. Prajila, A. Joseph, Mater. Corros. 62, 9999 (2011)

    Article  Google Scholar 

  15. A.S. Fouda, H.A. Wahed Arab. J. Chem (2011). doi:10.1016/ j.arabjc.2011.02.014

  16. W.J. Lorenz, F. Mansfeld, Corros. Sci. 21, 47 (1981)

    Article  Google Scholar 

  17. A. Yagan, N.O. Pekmez, A. Yildiz. Prog. Org. Coat. 57, 314 (2006)

    Article  Google Scholar 

  18. E.A. Noor, Mater. Chem. Phys. 114, 533 (2009)

    Article  CAS  Google Scholar 

  19. E.S.M. Scherif, R.M. KrasmurCamins, J. Colloid Interface Sci. 306, 96 (2006)

    Article  Google Scholar 

  20. A.Y. Musa, A.B. Mohamad, A.A.H. Kadhum, M.S. Takriff, L.T. Tien, Corros. Sci. 53, 3672 (2011)

    Article  CAS  Google Scholar 

  21. J.O.M. Bockris, S.U.M. Khan. Surface electrochemistry—a molecular level approach, (Plenum, New York, 1993), p.223

  22. B. Atega, B. Anadouli, F. Nizamy, Corros. Sci. 24, 509 (1984)

    Article  Google Scholar 

  23. E. Chaieb, A. Bouyazer, B. Hammoti, M. Benkaddours, Appl. Surf. Sci. 246, 199 (2005)

    Article  CAS  Google Scholar 

  24. D.A. Quan Zhang, Q.-R. Cai, X.-M. He, L.-X. Gao, G.-S. Kim, Mater. Chem. Phys. 114, 612 (2009)

    Article  Google Scholar 

  25. C. Kustu, K.C. Emregui, O. Atakol, Corros. Sci. 48, 1279 (2006)

    Article  Google Scholar 

  26. J. Vasta, J. Eliasek, Corros. Sci. 11, 223 (1971)

    Article  Google Scholar 

  27. A. Chakrabarti, Corros. J. 19, 124 (1984)

    Article  CAS  Google Scholar 

  28. P.G. Abdul-ahad, S.H.F. Al-Madfai, Corrosion 45, 978 (1989)

    Article  CAS  Google Scholar 

  29. F.B. Growcock, Corrosion 45, 1003 (1989)

    Article  CAS  Google Scholar 

  30. J.M. Costa, J.M. Lluch, Corros. Sci. 24, 929 (1984)

    Article  CAS  Google Scholar 

  31. I. Lukovits, E. Kalman, F. Zuachi, Corrosion 3, 57 (2001)

    Google Scholar 

  32. G. Bereket, C. Ogretis, E. Hur, J. Mol. Struct. (THEOCHEM) 59, 578 (2002)

    Google Scholar 

  33. R.G. Pearson, Inorg. Chem. 27, 734 (1988)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abraham Joseph.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramya, K., Joseph, A. Dependence of temperature on the corrosion protection properties of vanillin and its derivative, HMATD, towards copper in nitric acid: theoretical and electroanalytical studies. Res Chem Intermed 41, 1053–1077 (2015). https://doi.org/10.1007/s11164-013-1254-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-013-1254-5

Keywords

Navigation