Skip to main content
Log in

Ammoxidation of 3-picoline to nicotinonitrile using silica-supported VCrO catalysts

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

A series of vanadium–chromium oxide (VCrO) catalysts supported on silica was prepared by wetness impregnation method with different Cr/V molar ratios from 0.2 to 1.0. These catalysts were characterized by XRD, TG, temperature-programmed desorption of ammonia (NH3-TPD), X-ray photoelectron spectra (XPS), and Raman spectroscopy, and their catalytic activity was evaluated in the ammoxidation of 3-picoline (3-PIC) to nicotinonitrile (NN). The results of XRD, TG, Raman, and XPS confirmed that the active components on the silica surface were mainly amorphous V2O5 and CrVO4. The results of NH3-TPD showed that acidity of the catalysts decreased with the increase of Cr/V ratio. Catalytic results revealed that acidity of the catalysts was closely related to the catalytic performance. Low acidity gave low conversion of 3-PIC and high NN selectivity. Furthermore, the conversion of 3-PIC increased with rise in reaction temperature, and the selectivity of NN was slightly influenced by the 3-PIC conversion. Therefore, among the catalysts (Cr/V ratio was 0.2, 0.4, 0.6) tested, Cr/V-0.6 catalyst retained the lowest acidity and exhibited the highest selectivity and yield of NN in the ammoxidation of 3-PIC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. C. Janke, J. Radnik, U. Bentrup et al., ChemCatChem. 1, 485–491 (2009)

    Article  CAS  Google Scholar 

  2. B. Manohar, B.M. Reddy, J. Chem. Technol. Biotechnol. 71, 141–146 (1998)

    Article  CAS  Google Scholar 

  3. A. Wickman, A. Andersson, Appl. Catal. A 391, 110–117 (2011)

    Article  CAS  Google Scholar 

  4. A. Martin, B. Lucke, Catal. Today 57, 61–70 (2000)

    Article  CAS  Google Scholar 

  5. A. Martin, V.N. Kalevaru, ChemCatChem 2, 1504–1522 (2010)

    Article  CAS  Google Scholar 

  6. V.N. Kalevaru, N. Madaan, A. Martin, Appl. Catal. A 391, 52–62 (2011)

    Article  CAS  Google Scholar 

  7. K.V.R. Chary, C.P. Kumar, D. Naresh et al., J. Mol. Catal. A 243, 149–157 (2006)

    Article  CAS  Google Scholar 

  8. F. Chen, F.M. Zhang, W.C. Fang et al., Zhejiang Shifan Daxue Xuebao 13, 316–320 (2008)

    Google Scholar 

  9. B.D. Raju, K.V. Narayana, S.K. Masthan et al., Catal. Lett. 84, 27–30 (2002)

    Article  Google Scholar 

  10. S.K. Masthan, K.V. Narayana, V.V. Rao et al., Catal. Commun. 3, 173–178 (2002)

    Article  Google Scholar 

  11. W.J. Yuan, H.F. Lu, B. Zhang et al., Fenzi Cuihua 25, 322–327 (2011)

    CAS  Google Scholar 

  12. G.Y. Xie, A.Q. Zhang, C. Huang, Res. Chem. Intermed. 36, 969–973 (2010)

    Article  CAS  Google Scholar 

  13. G.Y. Xie, C. Huang, Jingxi Huagong 24, 790–793 (2007)

    CAS  Google Scholar 

  14. H.F. Lu, Y. Zhou, H.F. Huang et al., Chin. J. Catal. 26, 101–105 (2005)

    CAS  Google Scholar 

  15. M. Gu, W. Li, J.L. Lv et al., Petrochem. Technol. 33, 568–569 (2004)

    Google Scholar 

  16. N.E. Fouad, J. Therm. Anal. Calorim. 60, 541–547 (2000)

    Article  CAS  Google Scholar 

  17. M.A. Banares, M.V. Martinez-Huerta, G. Deo et al., J. Phys. Chem. C 111, 18708–18714 (2007)

    Article  Google Scholar 

  18. S.B. Xie, E. Iglesia, A.T. Bell, J. Phys. Chem. B 105, 5144–5152 (2001)

    Article  CAS  Google Scholar 

  19. M.A. Banares, M.V. Martinez-Huerta, X. Gao et al., Catal. Today 118, 279–287 (2006)

    Article  Google Scholar 

  20. H.J. Tian, I.E. Wachs, L.E. Briand, J. Phys. Chem. B 109, 23491–23499 (2005)

    Article  CAS  Google Scholar 

  21. I.E. Wachs, L.E. Briand, J.M. Jehng et al., Catal. Today 78, 257–268 (2003)

    Article  Google Scholar 

  22. H.X. Dai, J.G. Deng, L. Zhang et al., Catal. Today 164, 347–352 (2011)

    Article  Google Scholar 

  23. H. Dai, L. Zhang, Y. Zhao et al., Catal. Today 131, 42–54 (2008)

    Article  Google Scholar 

  24. T. Dogu, G. Karamullaoglu, Ind. Eng. Chem. Res. 46, 7079–7086 (2007)

    Article  Google Scholar 

  25. G. Silversmit, D. Depla, H. Poelman et al., J. Electron Spectrosc. Relat. Phenom. 135, 167–175 (2004)

    Article  CAS  Google Scholar 

  26. S.K. Roy, P. Dutta, L.N. Nandi et al., J. Mol. Catal. A 223, 211–215 (2004)

    Article  CAS  Google Scholar 

  27. V.N. Kalevaru, B.D. Raju, V.V. Rao et al., Appl. Catal. A 352, 223 (2009)

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors thank the Natural Science Foundation of China (nos. 21076044 and 20906013) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guomin Xiao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, F., Wei, R., Gao, L. et al. Ammoxidation of 3-picoline to nicotinonitrile using silica-supported VCrO catalysts. Res Chem Intermed 39, 1353–1361 (2013). https://doi.org/10.1007/s11164-012-0691-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-012-0691-x

Keywords

Navigation