Skip to main content
Log in

Fluorescence response of TICT-active aminostilbenes to copper(II) ions: redox reaction vs ion recognition

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Cu(II)-selective fluorescence enhancement (1, 2, and 4) or fluorescence quenching (3) was observed for aminostilbenes 14 in acetonitrile. The fluorescence responses result from efficient Cu(II)-mediated oxidation of 14 that forms new fluorescent species rather than from any specific noncovalent interactions. Evidence of redox reactions includes irreversible Cu(II) titration spectra, spectroscopic observation of the radical cations, and isolation of oxidized aminostilbene dimers. These results provide a new method for synthesis of tetrasubstituted tetrahydrofurans and suggest that aminostilbenes with twisted intramolecular charge-transfer activity are potential fluorescence-enhanced Cu(II) chemodosimeters. The role of Cu(II)-mediated redox reactions should be always taken into account in mechanisms for sensing of arylamine-based Cu(II)-selective fluoroionophores.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 2
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M. Olivares, R. Uauy, Am. J. Clin. Nutr. 63, 797S–811S (1996)

    Google Scholar 

  2. R. Uauy, M. Olivares, M. Gonzalez, Am. J. Clin. Nutr. 67, 952S–959S (1998)

    CAS  Google Scholar 

  3. Y. Xiang, A. Tong, P. Jin, Y. Ju, Org. Lett. 8, 2863–2866 (2006)

    Article  CAS  Google Scholar 

  4. P. Li, X. Duan, Z. Chen, Y. Liu, T. Xie, L. Fang, X. Li, M. Yinb, B. Tang, Chem. Commun. 775, 5–7757 (2011)

    Google Scholar 

  5. G. Hennrich, W. Walther, U. Resch-Genger, H. Sonnenschein, Inorg. Chem. 40, 641–644 (2001)

    Article  CAS  Google Scholar 

  6. Z. Xu, X. Qian, J. Cui, Org. Lett. 7, 3029–3032 (2004)

    Article  Google Scholar 

  7. R. Martínez, A. Espinosa, A. Tárraga, P. Molina, Tetrahedron 66, 3662–3667 (2010)

    Article  Google Scholar 

  8. I.-T. Ho, J.-H. Chu, W.-S. Chung, Eur. J. Org. Chem. 147, 2–1481 (2011)

    Google Scholar 

  9. H. Zhang, L.-F. Han, K.A. Zachariasse, Y.-B. Jiang, Org. Lett. 7, 4217–4220 (2005)

    Article  CAS  Google Scholar 

  10. Z.-C. Wen, R. Yang, H. He, Y.-B. Jiang, Chem. Commun., 106–108 (2006)

  11. A.W. Varnes, R.B. Dodson, E.L. Wehry, J. Am. Chem. Soc. 94, 946–950 (1972)

    Article  CAS  Google Scholar 

  12. Y. Xiang, A. Tong, Luminescence 23, 28–31 (2008)

    Article  CAS  Google Scholar 

  13. G. Ajayakumar, Ke. Sreenath, K.R. Gopidas, Dalton Trans., 1180–1186 (2009)

  14. A.-F. Li, H. He, Y.-B. Ruan, Z.-C. Wen, J.-S. Zhao, Q.-J. Jiang, Y.-B. Jiang, Org. Biomol. Chem. 7, 193–200 (2009)

    Article  CAS  Google Scholar 

  15. E. Sanna, L. Martínez, C. Rotger, S. Blasco, J. González, E. García-Espańa, A. Costa, Org. Lett. 12, 3840–3843 (2010)

    Article  CAS  Google Scholar 

  16. W. Lin, Li. Long, B. Chen, W. Tan, W. Gao, Chem. Commun. 46, 1311–1313 (2010)

    Article  CAS  Google Scholar 

  17. L.M. Hyman, C.J. Stephenson, M.G. Dickens, K.D. Shimizub, K.J. Franz, Dalton Trans. 39, 568–576 (2010)

    Article  CAS  Google Scholar 

  18. D. Wang, Y. Shiraishi, T. Hirai, Chem. Commun. 47, 2673–2675 (2011)

    Article  CAS  Google Scholar 

  19. S. Sumalekshmy, K.R. Gopidas, Chem. Phys. Lett. 413, 294–299 (2005)

    Article  CAS  Google Scholar 

  20. M. Kirchgessner, K. Sreenath, K.R. Gopidas, J. Org. Chem. 71, 9849–9852 (2006)

    Article  CAS  Google Scholar 

  21. K. Sreenath, C.V. Suneesh, V.K.R. Kumar, K.R. Gopidas, J. Org. Chem. 73, 3245–3251 (2008)

    Article  CAS  Google Scholar 

  22. K. Sreenath, C.V. Suneesh, K.R. Gopidas, R.A. Flowers II, J. Phys. Chem. A 113, 6477–6483 (2009)

    Article  CAS  Google Scholar 

  23. K. Sreenath, T.G. Thomas, K.R. Gopidas, Org. Lett. 13, 1134–1137 (2011)

    Article  CAS  Google Scholar 

  24. J.-S. Yang, Y.-D. Lin, Y.-H. Lin, F.-L. Liao, J. Org. Chem. 69, 3517–3525 (2004)

    Article  CAS  Google Scholar 

  25. J.-S. Yang, C.-Y. Hwang, M.-Y. Chen, Tetrahedron Lett. 48, 3097–3102 (2007)

    Article  CAS  Google Scholar 

  26. X. Liu, X. Shu, X. Zhou, X. Zhang, J. Zhu, J. Phys. Chem. A 114, 13370–13375 (2010)

    Article  CAS  Google Scholar 

  27. J.-S. Yang, K.-L. Liau, C.-M. Wang, C.-Y. Hwang, J. Am. Chem. Soc. 126, 12325–12335 (2004)

    Article  CAS  Google Scholar 

  28. J.-S. Yang, K.-L. Liau, C.-Y. Hwang, C.-M. Wang, J. Phys. Chem. A 110, 8003–8010 (2006)

    Article  CAS  Google Scholar 

  29. J.-S. Yang, K.-L. Liau, C.-Y. Li, M.-Y. Chen, J. Am. Chem. Soc. 129, 13183–13192 (2007)

    Article  CAS  Google Scholar 

  30. P.F. Lee, C.-T. Yang, D. Fan, J.J. Vittal, J.D. Ranford, Polyhedron 22, 2781–2786 (2003)

    Article  CAS  Google Scholar 

  31. F.D. Lewis, R.S. Kalgutkar, J.-S. Yang, J. Am. Chem. Soc. 121, 12045–12053 (1999)

    Article  CAS  Google Scholar 

  32. J.-S. Yang, S.-Y. Chiou, K.-L. Liau, J. Am. Chem. Soc. 124, 2518–2527 (2002)

    Article  CAS  Google Scholar 

  33. D.W. Old, M.C. Harris, S.L. Buchwald, Org. Lett. 10, 1403–1406 (2000)

    Article  Google Scholar 

  34. M.-K. Leung, C–.C. Chang, M.-H. Wu, K.-H. Chuang, J.-H. Lee, S.-J. Shieh, S.-C. Lin, C.-F. Chiu, Org. Lett. 8, 2623–2626 (2006)

    Article  CAS  Google Scholar 

  35. C.-C. Chang, H. Yueh, C.-T. Chen, Org. Lett. 13, 2702–2705 (2011)

    Article  CAS  Google Scholar 

  36. V. Balzani (ed.), Electron Transfer in Chemistry, vol. 1–5 (Wiley, New York, 2001)

  37. M.A. Fox, M. Chanon (eds.), Photoinduced Electron Transfer, Parts A–D (Elsevier, Amsterdam, 1988)

  38. G.J. Kavarnos, N.J. Turro, Chem. Rev. 86, 401–449 (1986)

    Article  CAS  Google Scholar 

  39. R.F. Nelson, R.H. Philp, J. Phys. Chem. 83, 713–716 (1979)

    Article  CAS  Google Scholar 

  40. S.S. Velu, I. Buniyamin, L.K. Ching, F. Feroz, I. Noorbatcha, L.C. Gee, K. Awang, I.A. Wahab, J.-F.F. Weber, Chem. Eur. J. 14, 11376–11384 (2008)

    Article  CAS  Google Scholar 

  41. R.t.H. Cichewicz, S.A. Kouzi, M.T. Hamann, J. Nat. Prod. 63, 29–33 (2000)

    Article  CAS  Google Scholar 

  42. L. Panzella, M.D. Lucia, C. Amalfitano, A. Pezzella, A. Evidente, A. Napolitano, M. d’Ischia, J. Org. Chem. 71, 4246–4254 (2006)

    Article  CAS  Google Scholar 

  43. H.J. Shire, D.-C. Zhao, J. Org. Chem. 55, 4086–4089 (1990)

    Article  Google Scholar 

  44. D.T. Breslin, M.A. Fox, J. Phys. Chem. 98, 408–411 (1994)

    Article  CAS  Google Scholar 

  45. W.R. Dawson, M.W. Windsor, J. Phys. Chem. 72, 3251–3260 (1968)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support for this research was provided by the National Science Council of Taiwan, ROC. The authors also thank Dr Kang-Ling Liau for providing compound 3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jye-Shane Yang.

Additional information

This paper is dedicated to Professor Kazuhiko Mizuno on the occasion of his retirement from Osaka Prefecture University.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, CK., Yang, JS. Fluorescence response of TICT-active aminostilbenes to copper(II) ions: redox reaction vs ion recognition. Res Chem Intermed 39, 19–32 (2013). https://doi.org/10.1007/s11164-012-0627-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-012-0627-5

Keywords

Navigation