Skip to main content
Log in

Aromatic versus Aliphatic α-Diimine Ligands in Heteroleptic Copper(I) Emitters: Photophysical and Electrochemical Properties

  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

The electrochemical and photophysical properties of a heteroleptic Cu(I) complex bearing an aliphatic α-diimine ligand, [Cu(dab)(xantphos)]+ (Cu-dab; dab = N,N’-diphenyl-2,3-dimethyl-1,4-diazabutadiene, xantphos = 4,5-bis(diphenylphosphino)-9,9-dimethylxanthene), were evaluated together with those of complexes [Cu(dmp)(xantphos)]+ (Cu-dmp; dmp = 2,9-dimethyl-1,10-phenanthroline), [Cu(dmbpy)(xantphos)]+ (Cu-dmbpy; dmbpy = 5,5’-dimethyl-2,2’-bipyridine), and [Cu(bq)(xantphos)]+ (Cu-bq; bq = 2,2’-biquinoline), bearing aromatic diimine ligands. Cu-dab exhibited a two-step ligand-centered redox behavior, where the first wave corresponded to an electrochemically reversible one-electron reduction process. Although Cu(I)-aromatic diimine complexes Cu-dmp, Cu-dmbpy, and Cu-bq exhibited obvious luminescence from the metal-to-ligand charge transfer (MLCT) excited state, Cu-dab did not show any luminescence. Computational studies indicated that this non-luminescent property was caused by the large structural relaxation of Cu-dab during photoexcitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Armaroli, Chem. Soc. Rev., 2001, 30, 113.

    Article  CAS  Google Scholar 

  2. M. Ruthkosky, C.A. Kelly, F.N. Castellano, G.J. Meyer, Coord. Chem. Rev., 1998, 777, 309.

    Article  Google Scholar 

  3. D.V. Scaltrito, D.W. Thompson, J.A. O'Callaghan, G.J. Meyer, Coord. Chem. Rev., 2000, 208, 243.

    Article  CAS  Google Scholar 

  4. A. Barbieri, G. Accorsi, N. Armaroli, Chem. Commun., 2008, 2185.

    Google Scholar 

  5. A. Kobayashi and M. Kato, Chem. Lett., 2017, 46, 154.

    Article  Google Scholar 

  6. O. Wenger, J. Am. Chem. Soc., 2018, 740, 13522.

    Article  Google Scholar 

  7. K.R. Kyle, C.K. Ryu, J.A. DiBenedetto, P.C. Ford, J. Am. Chem. Soc., 1991, 773, 2954.

    Article  Google Scholar 

  8. A. Tsuboyama, K. Kuge, M. Furugori, S. Okada, M. Hoshino, K. Ueno, Inorg. Chem., 2007, 46, 1992.

    Article  CAS  PubMed  Google Scholar 

  9. J.C. Deaton, S.C. Switalski, D.Y. Kondakov, R.H. Young, T.D. Pawlik, D.J. Giesen, S.B. Harkins, A.J.M. Miller, S.F. Mickenberg, J.C. Peters, J. Am. Chem. Soc., 2010, 732, 9499.

    Article  Google Scholar 

  10. Y.-E. Kim, J. Kim, J.W. Park, K. Park, Y. Lee, Chem. Commun., 2017, 53, 2858.

    Article  CAS  Google Scholar 

  11. R. Hamze, J.L. Peltier, D. Sylvinson, M. Jung, J. Cardenas, R. Haiges, M. Soleilhavoup, R. Jazzar, P.I. Djurovich, G. Bertrand, M.E. Thompson, Science, 2019, 363, 601.

    Article  CAS  PubMed  Google Scholar 

  12. R. Czerwieniec, M.J. Leitl, H.H.H. Homeier, H. Yersin, Coord. Chem. Rev., 2016, 325, 2.

    Article  CAS  Google Scholar 

  13. M. Kato, H. Ito, M. Hasegawa, K. Ishii, Chem. Eur. J., 2019, 25, 5105.

    Article  CAS  PubMed  Google Scholar 

  14. O.S. Wenger, Chem. Rev., 2013, 773, 3686.

    Article  Google Scholar 

  15. Y. Zhang, M. Schulz, M. Wächtler, M. Karnahl, B. Dietzek, Coord. Chem. Rev., 2018, 356, 127.

    Article  CAS  Google Scholar 

  16. D.G. Cuttell, S.M. Kuang, P.E. Fanwick, D.R. McMillin, R.A. Walton, J. Am. Chem. Soc., 2002, 724

  17. Q. Zhang, Q. Zhou, Y. Cheng, L. Wang, D. Ma, X. Jing, F. Wang, Adv. Mater., 2004, 76, 432.

    Article  Google Scholar 

  18. C.S. Smith, C.W. Branham, B.J. Marquardt, K.R. Mann, J. Am. Chem. Soc., 2010, 732, 14079.

    Article  Google Scholar 

  19. M. Nishikawa, Y. Wakita, T. Nishi, T. Miura, T. Tsubomura, Dalton Trans., 2015, 44, 9170.

    Article  CAS  PubMed  Google Scholar 

  20. S. Yanagida, M. Yoshida, W.M.C. Sameera, A. Kobayashi, M. Kato, Bull. Chem. Soc. Jpn., 2019, 92, 1684.

    Article  CAS  Google Scholar 

  21. S. Paria and O. Reiser, ChemCatChem, 2014, 6, 2477.

    Article  Google Scholar 

  22. S.-P. Luo, E. Mejfa, A. Friedrich, A. Pazidis, H. Junge, A.-E. Surkus, R. Jackstell, S. Denurra, S. Gladiali, S. Lochbrunner, M. Beller, Angew. Chem., Int. Ed., 2013, 52, 419.

    Article  CAS  Google Scholar 

  23. A.C. Hernandez-Perez and S.K. Collins, Angew. Chem., Int. Ed., 2013, 52, 12696.

    Article  Google Scholar 

  24. H. Takeda, K. Ohashi, A. Sekine, O. Ishitani, J. Am. Chem. Soc., 2016, 738, 4354.

    Article  Google Scholar 

  25. H. tom Dieck and L. Stamp, Z. Naturforsch. B, 1990, 45, 1369.

    Article  Google Scholar 

  26. B. Zelenay, R. Frutos-Pedreño, J. Markalain-Barta, E. Vega-Isa, A.J.P. White, S. Dfez-González, Eur. J. Inorg. Chem., 2016, 4649.

    Google Scholar 

  27. C. Mealli, A. Ienco, A.D. Phillips, A. Galindo, Eur. J. Inorg. Chem., 2007, 2556.

    Google Scholar 

  28. N. Muresan, K. Chlopek, T. Weyhermüller, F. Neese, K. Wieghardt, Inorg. Chem., 2007, 46, 5327.

    Article  CAS  PubMed  Google Scholar 

  29. M. Ghosh, S. Sproules, T. Weyhermüller, K. Wieghardt, Inorg. Chem., 2008, 47, 5963.

    Article  CAS  PubMed  Google Scholar 

  30. K.A. Kreisel, G.P.A. Yap, K.H. Theopold, Inorg. Chem., 2008, 47, 5293.

    Article  CAS  PubMed  Google Scholar 

  31. B.E. Cole, J.P. Wolbach, W.G. Dougherty, Jr., N.A. Piro, W.S. Kassel, C.R. Graves, Inorg. Chem., 2014, 53, 3899.

    Article  CAS  PubMed  Google Scholar 

  32. C. Stanciu, M.E. Jones, P.E. Fanwick, M.M. Abu-Omar, J. Am. Chem. Soc., 2007, 729, 12400.

    Article  Google Scholar 

  33. H. Tsurugi, T. Saito, H. Tanahashi, J. Arnold, K. Mashima, J. Am. Chem. Soc., 2011, 733, 18673.

    Article  Google Scholar 

  34. B.J. McCullough, B.J. Neyhouse, B.R. Schrage, D.T. Reed, A.J. Osinski, C.J. Ziegler, T.A. White, Inorg. Chem., 2018, 57, 2865.

    Article  CAS  PubMed  Google Scholar 

  35. C. Minozzi, A. Caron, J.-C. Grenier-Petel, J. Santandrea, S.K. Collins, Angew. Chem., Int. Ed., 2018, 57, 5477.

    Article  CAS  Google Scholar 

  36. C.K. Chung and R.H. Grubbs, Org. Lett., 2008, 70, 2693.

    Google Scholar 

  37. N.G. Connelly and W.E. Geiger, Chem. Rev., 1996, 96, 877.

    Article  PubMed  Google Scholar 

  38. W.R. Dawson and M.W. Windsor, J. Phys. Chem., 1968, 72, 3251.

    Article  Google Scholar 

  39. W.H. Melhuish, J. Phys. Chem., 1961, 65, 229.

    Article  CAS  Google Scholar 

  40. A.J. Bard and L.R. Faulkner, "Electrochemical Methods: Fundamentals and Applications", 1980, John Wiley and Sons, New York, Chichester, Brisbane, Toronto.

    Google Scholar 

  41. Y. Zhang, M. Heberle, M. Wächtler, M. Karnahl, B. Dietzek, RSCAdv., 2016, 6, 105801.

    CAS  Google Scholar 

  42. M. Nishikawa, D. Kakizoe, Y. Saito, T. Tsubomura, Bull. Chem. Soc. Jpn., 2017, 90, 286.

    Article  CAS  Google Scholar 

  43. A.G. Tennyson, E.L. Rosen, M.S. Collins, V.M. Lynch, C.W. Bielawski, Inorg. Chem., 2009, 48, 6924.

    Article  CAS  PubMed  Google Scholar 

  44. M.M. Roubelakis, D.K. Bediako, D.K. Dogutan, D.G. Nocera, Energy Environ. Sci., 2012, 5, 7737.

    Article  CAS  Google Scholar 

  45. Z. Hu, C.M. Schneider, C.N. Price, W.M. Pye, L.N. Dawe, F.M. Kerton, Eur. J. Inorg. Chem., 2012, 1773.

    Google Scholar 

  46. B.D. Rossenaar, F. Hartl, D.J. Stufkens, Inorg. Chem., 1996, 35, 6194.

    Article  CAS  Google Scholar 

  47. M. Heberle, S. Tschierlei, N. Rockstroh, M. Ringenberg, W. Frey, H. Junge, M. Beller, S. Lochbrunner, M. Karnahl, Chem. Eur. J., 2017, 23, 312.

    Article  CAS  PubMed  Google Scholar 

  48. A. Klein, T. Schurr, S. Zális, Z. Anorg. Allg. Chem., 2005, 637, 2669.

    Article  Google Scholar 

  49. Absorption maxima of Cu-dmp and Cu-bq in acetonitrile are relatively blue-shifted compared with those in dichloromethane (386 and 455 nm for Cu-dmp and Cu-bq, respectively; see Refs. 6 (e) and 12). Such negative solvatochromism is commonly observed for charge-transfer absorption bands of coordination compounds. See also: N.J. Turro, V. Ramamurthy, J.C. Scaiano, "Principles of Molecular Photochemistry: An Introduction", 2009, University Science Books, New York.

  50. M. Washimi, M. Nishikawa, N. Shimoda, S. Satokawa, T. Tsubomura, Inorg. Chem. Front., 2017, 4, 639.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masako Kato.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoshida, M., Yanagida, S., Saito, D. et al. Aromatic versus Aliphatic α-Diimine Ligands in Heteroleptic Copper(I) Emitters: Photophysical and Electrochemical Properties. ANAL. SCI. 36, 67–71 (2020). https://doi.org/10.2116/analsci.19SAP07

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.19SAP07

Keywords

Navigation