Skip to main content
Log in

EIS and adjunct electrical modeling for material selection by evaluating two mild steels for use in super-alkaline mineral processing

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

The production of metal concentrates during mineral processing of ferrous and non-ferrous metals involves a variety of highly corrosive chemicals which deteriorate common mild steel as the material of choice in the construction of such lines, through rapid propagation of localized pitting in susceptible parts, often in sensitive areas. This requires unscheduled maintenance and plant shut down. In order to test the corrosion resistance of different available materials as replacement materials, polarization and electrochemical impedance spectroscopy (EIS) tests were carried out. The EIS numerical outputs were then transformed into an equivalent electric circuit using Z-View software, and the predictive behavior was contrasted with actual performance after long-term immersion, depicted through SEM, EDS, XRD and weight change observations. Also, results of pits and cracks, obtained with climax software-enhanced polarization resistance, and reduced capacitance added to much diminished current densities, verified the acceptable performance of CK45 compared with high priced stainless steel substitutes with comparable operational life. Therefore, CK45 can be a suitable alternative in steel constructions which are exposed to super-alkaline and corrosive environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. G.S. Frankel, L. Stockert, F. Hunkeler, H. Boehni, Corrosion 43, 429 (1987)

    Article  CAS  Google Scholar 

  2. S.M. Madani, M. Ehteshamzadeh, H.H. Rafsanjani, S.S. Mansoori, Mat. Corr. 61, 318 (2010). doi:10.1002/maco.200905306

  3. P.C. Pistorius, G.T. Burstein, Corros. Sci. 33, 1885 (1992)

    Article  CAS  Google Scholar 

  4. P.C. Pistorious, G.T. Burstein, Corros. Sci. 36, 255 (1994)

    Google Scholar 

  5. Y. Tang, Y. Zuo, Mater. Chem. Phys. 88, 221 (2004)

    Article  CAS  Google Scholar 

  6. Y.M. Tang, Y. Zuo, X.H. Zhao, Corros. Sci. 50, 989 (2008)

    Article  CAS  Google Scholar 

  7. Y.F. Cheng, J.L. Luo, Electrochim. Acta 44, 2947 (1999)

    Article  CAS  Google Scholar 

  8. Y.F. Cheng, J.L. Luo, Electrochim. Acta 44, 4795 (1999)

    Article  CAS  Google Scholar 

  9. E. McCafferty, Electrochem. Soc. 137, 3731 (1990)

    Article  CAS  Google Scholar 

  10. Y.F. Cheng, M. Wilmott, J.L. Luo, Appl. Surf. Sci. 152, 161 (1999)

    Article  CAS  Google Scholar 

  11. J. Smulko, K. Darowicki, A. Zielinski, Electrochim. Acta 47, 1297 (2002)

    Article  CAS  Google Scholar 

  12. G.T. Burstein, P.C. Pistorius, S.P. Mattin, Corros. Sci. 35, 57 (1993)

    Article  CAS  Google Scholar 

  13. G.T. Burstein, S.P. Vines, J. Electrochem. Soc. 148, 504 (2001)

    Article  Google Scholar 

  14. B. Malki, B. Baroux, Corros. Sci. 47, 171 (2005)

    Article  CAS  Google Scholar 

  15. N.J. Laycock, J.S. Noh, S.P. White, D.P. Krouse, Corros. Sci. 47, 3140 (2005)

    Article  CAS  Google Scholar 

  16. H. Wang, J. Xie, K.P. Yan, M. Duan, Y. Zuo, Corros. Sci. 51, 181 (2009)

    Article  Google Scholar 

  17. L. Organ, J.R. Scully, A.S. Mikhailov, J.L. Hudson, Electrochim. Acta 51, 225 (2005)

    Article  CAS  Google Scholar 

  18. J.A. González, J.M. Miranda, E. Otero, S. Feliu, Corros. Sci. 49, 436 (2007)

    Article  Google Scholar 

  19. S. Jeon, S. Kim, I. Lee, J. Park, K. Kim, J. Kim, Y. Park, Corros. Sci. 53, 1408 (2011)

    Article  CAS  Google Scholar 

  20. M. Seo, G. Hultquist, C. Leygraf, N. Sato, Corros. Sci. 26, 949 (1986)

    Article  CAS  Google Scholar 

  21. Y. Jiangnan, W. Lichang, S. Wenhao, Corros. Sci. 33, 851 (1992)

    Article  Google Scholar 

  22. G. Hultquist, M. Seo, T. Leitner, C. Leygraf, N. Sato, Corros. Sci. 27, 937 (1987)

    Article  CAS  Google Scholar 

  23. B. Postrach, I. Garz, H.H. Stehblow, Werkst. Korros. 45, 508 (1994)

    Article  CAS  Google Scholar 

  24. L. Fedrizzi, A. Molinari, F. Deflorian, A. Tiziani, Br. Corros. J. 26, 46 (1991)

    CAS  Google Scholar 

  25. A. Yamamoto, T. Ashiura, E. Kamisaka, Boshoku Gijutsu 35, 448 (1986)

    CAS  Google Scholar 

  26. S.T. Kim, Y.S. Park, Corrosion 63, 114 (2007)

    Article  CAS  Google Scholar 

  27. A.A. Hermas, K. Ogura, T. Adachi, Electrochim. Acta 40, 837 (1995)

    Article  CAS  Google Scholar 

  28. A.A. Hermas, K. Ogura, S. Yakagi, T. Adachi, Corrosion 51, 3 (1995)

    Article  CAS  Google Scholar 

  29. T. Ujiro, S. Satoh, R.W. Staehle, W.H. Smyrl, Corros. Sci. 43, 2185 (2001)

    Article  CAS  Google Scholar 

  30. J. Stewart, D.E. Williams, Corros. Sci. 33, 457 (1992)

    Article  CAS  Google Scholar 

  31. S.T. Kim, S.H. Jeon, I.S. Lee, Y.S. Park, Corros. Sci. 52, 1897 (2010)

    Article  CAS  Google Scholar 

  32. A. Bhattacharya, P.M. Singh, Corrosion 64, 532 (2008)

    Article  CAS  Google Scholar 

  33. I.N. Bastos Sérgio, S.M. Tavares, F. Dalard, R.P. Nogueira, Scripta Mater. 57, 913 (2007)

    Article  Google Scholar 

  34. S.H. Jeon, S.T. Kim, I.S. Lee, Y.S. Park, Corros. Sci. 52, 3537 (2010)

    Article  CAS  Google Scholar 

  35. G.T. Burstein, R.M. Souto, Electrochim. Acta 40, 1881 (1995)

    Article  CAS  Google Scholar 

  36. G.T. Burstein, S.P. Mattin, Philos. Mag. Lett. 66, 127 (1992)

    Article  CAS  Google Scholar 

  37. D.E. Williams, J. Stewart, P.H. Balkwill, Corros. Sci. 36, 1213 (1994)

    Article  CAS  Google Scholar 

  38. M. Keddam, M. Krarti, C. Pallotta, Corrosion 43, 454 (1987)

    Article  CAS  Google Scholar 

  39. P.C. Pistorius, G.T. Burstein, Corros. Sci. 36, 525 (1994)

    Article  CAS  Google Scholar 

  40. S.T. Pride, J.R. Scully, J.L. Hudson, J. Electrochem. Soc. 141, 3028 (1994)

    Article  CAS  Google Scholar 

  41. M.A. Deyab, S.S. Abd El-Rehim, Electrochim. Acta 53, 1754 (2007)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Soheil Mansouri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bakhtiyari, L., Moghimi, F., Mansouri, S.S. et al. EIS and adjunct electrical modeling for material selection by evaluating two mild steels for use in super-alkaline mineral processing. Res Chem Intermed 38, 965–982 (2012). https://doi.org/10.1007/s11164-011-0433-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-011-0433-5

Keywords

Navigation