Skip to main content

Advertisement

Log in

Electrochemical Behavior of X70 and X80 Pipeline Steels in a Simulated Soil Environment with and without the Presence of Chlorides

  • Original Research Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The present work investigates the effect of microstructure, pH as well as the role of aggressive chloride ions on the corrosion behavior of American Petroleum Institute (API) X70 and X80 steel grades. The corrosion behavior was studied using single-run cyclic polarization in different solutions followed by microstructural analysis of the corroded samples to determine the mode and extent of corrosion damage. The solutions consist of a near-neutral aqueous sodium chloride solution, mildly alkaline carbonate-bicarbonate solution (pH-8.8), and highly alkaline carbonate-bicarbonate solution (pH-12) with and without the presence of chlorides. Ferrite phase in both the steel was found to dissolve preferentially in the different solutions leading to pitting as a result of microgalvanic coupling with the cementite and/or bainite phase. Interestingly, the corrosion resistance of the X70 grade was found to be greater than X80 at near-neutral as well as low alkaline carbonate-bicarbonate solutions, whereas the X80 performed better in higher pH solutions. Such contrasting corrosion behavior is attributed to the compactness, thickness, and electronic resistance of the passive oxide/hydroxide films formed during polarization in both the steel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. L. Dai, H. Bian, L. Wang, M. Potier-Ferry, and J. Zhang, Prestress Loss Diagnostics in Pretensioned Concrete Structures with Corrosive Cracking, J. Struct. Eng., 2020, 146(3), p 04020013.

    Article  Google Scholar 

  2. H. Liu, Y. Dai, and Y.F. Cheng, Corrosion of Underground Pipelines in Clay Soil With Varied Soil Layer Thicknesses and Aerations, Arab. J. Chem., 2020, 13(2), p 3601–3614.

    Article  CAS  Google Scholar 

  3. L. Wang, L. Dai, H. Bian, Y. Ma, and J. Zhang, Concrete Cracking Prediction under Combined Prestress and Strand Corrosion, Struct. Infrastruct. Eng., 2019, 15(3), p 285–295.

    Article  Google Scholar 

  4. M.C. Li and Y.F. Cheng, Corrosion of the Stressed Pipe Steel in Carbonate-Bicarbonate Solution Studied by Scanning Localized Electrochemical Impedance Spectroscopy, Electrochim. Acta, 2008, 53(6), p 2831–2836.

    Article  CAS  Google Scholar 

  5. L. Fan, Z.-Y. Liu, W.-M. Guo, J. Hou, C.-W. Du, and X.-G. Li, A New Understanding of Stress Corrosion Cracking Mechanism of X80 Pipeline Steel at Passive Potential in High-pH Solutions, Acta Metallurgica Sinica (English Letters), 2015, 28(7), p 866–875.

    Article  CAS  Google Scholar 

  6. P. Liang, X. Li, C. Du, and X. Chen, Stress Corrosion Cracking of X80 Pipeline Steel in Simulated Alkaline Soil Solution, Mater. Des., 2009, 30(5), p 1712–1717.

    Article  CAS  Google Scholar 

  7. X. Zhou, T. Wu, L. Tan, J. Deng, C. Li, and W. Qiu, A Study on Corrosion of X80 Steel in a Simulated Tidal Zone, J. Market. Res., 2021, 12, p 2224–2237.

    CAS  Google Scholar 

  8. H.B. Xue and Y.F. Cheng, Passivity and Pitting Corrosion of X80 Pipeline Steel in Carbonate/Bicarbonate Solution Studied by Electrochemical Measurements, J. Mater. Eng. Perform., 2010, 19(9), p 1311–1317.

    Article  CAS  Google Scholar 

  9. S. Savoye, L. Legrand, G. Sagon, S. Lecomte, A. Chausse, R. Messina, and P. Toulhoat, Experimental Investigations on Iron Corrosion Products Formed in Bicarbonate/Carbonate-Containing Solutions at 90 °C, Corros. Sci., 2001, 43(11), p 2049–2064.

    Article  CAS  Google Scholar 

  10. L. Wei, X. Pang, C. Liu, and K. Gao, Formation Mechanism and Protective Property of Corrosion Product Scale on X70 Steel under Supercritical CO2 Environment, Corros. Sci., 2015, 100, p 404–420.

    Article  CAS  Google Scholar 

  11. F.F. Eliyan and A. Alfantazi, Mechanisms of Corrosion and Electrochemical Significance of Metallurgy and Environment with Corrosion of Iron and Steel in Bicarbonate and Carbonate Solutions—A Review, Corrosion, 2014, 70(9), p 880–898.

    Article  Google Scholar 

  12. J.-B. Li and J.-E. Zuo, Influences of Temperature and pH Value on the Corrosion Behaviors of X80 Pipeline Steel in Carbonate/Bicarbonate Buffer Solution, Chin. J. Chem., 2008, 26(10), p 1799–1805.

    Article  CAS  Google Scholar 

  13. S.T. Adamy and F.R. Cala, Inhibition of Pitting in Ferrous Materials by Carbonate as a Function of Temperature and Alkalinity, Corrosion, 1999, 55(9), p 825–839.

    Article  CAS  Google Scholar 

  14. J. Han, S. Nešić, Y. Yang, and B.N. Brown, Spontaneous Passivation Observations During Scale Formation on Mild Steel in CO2 Brines, Electrochim. Acta, 2011, 56(15), p 5396–5404.

    Article  CAS  Google Scholar 

  15. J. Han, J. Zhang, and J.W. Carey, Effect of Bicarbonate on Corrosion of Carbon Steel in CO2 Saturated Brines, Int. J. Greenhouse Gas Control, 2011, 5(6), p 1680–1683.

    Article  CAS  Google Scholar 

  16. Z. Lu, C. Huang, D. Huang, and W. Yang, Effects of a Magnetic Field on the Anodic Dissolution, Passivation and Transpassivation Behaviour of Iron in Weakly Alkaline Solutions with or Without Halides, Corros. Sci., 2006, 48(10), p 3049–3077.

    Article  CAS  Google Scholar 

  17. F.F. Eliyan, E.-S. Mahdi, and A. Alfantazi, Electrochemical Evaluation of the Corrosion Behaviour of API-X100 Pipeline Steel in Aerated Bicarbonate Solutions, Corros. Sci., 2012, 58, p 181–191.

    Article  CAS  Google Scholar 

  18. J.M. Kolotyrkin, Pitting Corrosion of Metals, Corrosion, 2013, 19(8), p 261t–268t.

    Article  Google Scholar 

  19. D.G. Li, Y.R. Feng, Z.Q. Bai, J.W. Zhu, and M.S. Zheng, Influence of Temperature, Chloride Ions and Chromium Element on the Electronic Property of Passive Film Formed on Carbon Steel in Bicarbonate/Carbonate Buffer Solution, Electrochim. Acta, 2007, 52(28), p 7877–7884.

    Article  CAS  Google Scholar 

  20. J. Jelinek and P. Neufeld, Temperature Effect on Pitting Corrosion of Mild Steel in De-Aerated Sodium Bicarbonate-Chloride Solutions, Corros. Sci., 1980, 20(4), p 489–496.

    Article  CAS  Google Scholar 

  21. M.M. El-Naggar, Effects of Cl, NO3 and SO42− anions on the anodic behavior of carbon steel in deaerated 0.50M NaHCO3 solutions, Appl. Surf. Sci., 2006, 252(18), p 6179–6194.

    Article  CAS  Google Scholar 

  22. J. Neshati, H.P. Masiha, M.G. Mahjani, and M. Jafarian, Study of Corrosion of Carbon Steel API 5L (X60) in NaHCO3/NaCl Solutions by Electrochemical Noise and Impedance Measurements, Corros. Eng., Sci. Technol., 2007, 42(4), p 371–376.

    Article  CAS  Google Scholar 

  23. Y. Tang and Y. Zuo, The Metastable Pitting of Mild Steel in Bicarbonate Solutions, Mater. Chem. Phys., 2004, 88(1), p 221–226.

    Article  CAS  Google Scholar 

  24. C.S. Brossia and G.A. Cragnolino, Effect of Environmental Variables on Localized Corrosion of Carbon Steel, Corrosion, 2000, 56(5), p 505–514.

    Article  CAS  Google Scholar 

  25. S. Choudhary, K. Mondal, S. Mukherjee, and R. Sundara Bharathy, Effect of Scale Spallation During Coiling on the Electrochemical and Pickling Behavior of a Hot-Rolled Dual-Phase Steel, J. Mater. Eng. Perform., 2018, 27(12), p 6505–6515.

    Article  CAS  Google Scholar 

  26. F.F. Eliyan and A. Alfantazi, Corrosion of the Heat-Affected Zones (HAZs) of API-X100 Pipeline Steel in Dilute Bicarbonate Solutions at 90 °C—An Electrochemical Evaluation, Corros. Sci., 2013, 74, p 297–307.

    Article  CAS  Google Scholar 

  27. S. Hara, T. Kamimura, H. Miyuki, and M. Yamashita, Taxonomy for Protective Ability of Rust Layer Using its Composition Formed on Weathering steel bridge, Corros. Sci., 2007, 49(3), p 1131–1142.

    Article  CAS  Google Scholar 

  28. T. Kamimura, S. Hara, H. Miyuki, M. Yamashita, and H. Uchida, Composition and Protective Ability of Rust Layer Formed on Weathering Steel Exposed to Various Environments, Corros. Sci., 2006, 48(9), p 2799–2812.

    Article  CAS  Google Scholar 

  29. M.A. Kindi, G.R. Joshi, K. Cooper, J. Andrews, P. Arellanes-Lozada, R. Leiva-Garcia, D.L. Engelberg, O. Bikondoa, and R. Lindsay, Substrate Protection with Corrosion Scales: Can We Depend on Iron Carbonate?, ACS Appl. Mater. Interfaces, 2021, 13(48), p 58193–58200.

    Article  CAS  Google Scholar 

  30. G.A. Zhang and Y.F. Cheng, Micro-Electrochemical Characterization and Mott–Schottky Analysis of Corrosion of Welded X70 Pipeline Steel in Carbonate/Bicarbonate Solution, Electrochim. Acta, 2009, 55(1), p 316–324.

    Article  CAS  Google Scholar 

  31. J. Stiksma and S.A. Bradford, Stress Corrosion Cracking of Dual-Phase Steel in Carbonate/Bicarbonate Solutions, Corrosion, 1985, 41(8), p 446–450.

    Article  CAS  Google Scholar 

  32. F.F. Eliyan and A. Alfantazi, Sensitivity of the Passive Films on API-X100 Steel Heat-Affected Zones (HAZs) Towards Trace Chloride Concentrations in Bicarbonate Solutions at High Temperature, Mater. Corros., 2014, 65(11), p 1111–1119.

    Article  CAS  Google Scholar 

  33. F. Mohammadi, F.F. Eliyan, and A. Alfantazi, Corrosion of Simulated Weld HAZ of API X-80 Pipeline Steel, Corros. Sci., 2012, 63, p 323–333.

    Article  CAS  Google Scholar 

  34. A. Torres-Islas, J.G. Gonzalez-Rodriguez, J. Uruchurtu, and S. Serna, Stress Corrosion Cracking Study of Microalloyed Pipeline Steels in Dilute NaHCO3 Solutions, Corros. Sci., 2008, 50(10), p 2831–2839.

    Article  CAS  Google Scholar 

  35. H. Mitsui, R. Takahashi, H. Asano, N. Taniguchi, and M. Yui, Susceptibility to Stress Corrosion Cracking for Low-Carbon Steel Welds in Carbonate-Bicarbonate Solution, Corrosion, 2008, 64(12), p 939–948.

    Article  CAS  Google Scholar 

  36. J.G. Gonzalez-Rodriguez, M. Casales, V.M. Salinas-Bravo, J.L. Albarran, and L. Martinez, Effect of Microstructure on the Stress Corrosion Cracking of X-80 Pipeline Steel in Diluted Sodium Bicarbonate Solutions, Corrosion, 2002, 58(7), p 584–590.

    Article  CAS  Google Scholar 

  37. P.K. Neetu, S. Katiyar, and K. Sangal, Mondal, Effect of Various Phase Fraction of Bainite, Intercritical Ferrite, Retained Austenite and Pearlite on the Corrosion Behavior of Multiphase Steels, Corros. Sci., 2021, 178, p 109043.

    Article  CAS  Google Scholar 

  38. P.K. Katiyar, P.K. Behera, S. Misra, and K. Mondal, Effect of Microstructures on the Corrosion Behavior of Reinforcing Bars (Rebar) Embedded in Concrete, Met. Mater. Int., 2019, 25(5), p 1209–1226.

    Article  CAS  Google Scholar 

  39. A.P. Moon, S. Sangal, S. Layek, S. Giribaskar, and K. Mondal, Corrosion Behavior of High-Strength Bainitic Rail Steels, Metall. Mater. Trans. A, 2015, 46(4), p 1500–1518.

    Article  CAS  Google Scholar 

  40. P.K. Rai, S. Shekhar, M. Nakatani, M. Ota, S.K. Vajpai, K. Ameyama, and K. Mondal, Effect of Harmonic Microstructure on the Corrosion Behavior of SUS304L Austenitic Stainless Steel, Metall. Mater. Trans. A, 2016, 47(12), p 6259–6269.

    Article  CAS  Google Scholar 

  41. T.K. Rout, Electrochemical Impedance Spectroscopy Study on Multi-Layered Coated Steel Sheets, Corros. Sci., 2007, 49(2), p 794–817.

    Article  CAS  Google Scholar 

  42. Y. Zhao, P. Liang, Y. Shi, Y. Zhang, and T. Yang, The Pitting Susceptibility Investigation of Passive Films Formed on X70, X80, and X100 Pipeline Steels by Electrochemical Noise and Mott–Schottky Measurements, Int. J. Corros., 2015, 2015, p 1–10.

    Article  Google Scholar 

  43. Y.F. Cheng and J.L. Luo, A Comparison of the Pitting Susceptibility and Semiconducting Properties of the Passive Films on Carbon Steel in Chromate and Bicarbonate Solutions, Appl. Surf. Sci., 2000, 167(1), p 113–121.

    Article  CAS  Google Scholar 

  44. Y.M. Zeng and J.L. Luo, Electronic Band Structure of Passive Film on X70 Pipeline Steel, Electrochim. Acta, 2003, 48(23), p 3551–3562.

    Article  CAS  Google Scholar 

  45. P.K. Behera, P.K. Katiyar, S. Misra, and K. Mondal, Effect of Pre-induced Plastic Strains on the Corrosion Behavior of Reinforcing Bar in 35 pct NaCl Solution, Metall. Mater. Trans. A, 2021, 52(2), p 605–626.

    Article  CAS  Google Scholar 

  46. P. Murkute, R. Kumar, S. Choudhary, H.S. Maharana, J. Ramkumar, and K. Mondal, Comparative Atmospheric Corrosion Behavior of a Mild Steel and an Interstitial Free Steel, J. Mater. Eng. Perform., 2018, 27(9), p 4497–4506.

    Article  CAS  Google Scholar 

  47. C.J. Strachan, T. Rades, K.C. Gordon, and J. Rantanen, Raman Spectroscopy for Quantitative Analysis of Pharmaceutical Solids, J. Pharm. Pharmacol., 2007, 59(2), p 179–192.

    Article  CAS  Google Scholar 

  48. E. Poorqasemi, O. Abootalebi, M. Peikari, and F. Haqdar, Investigating Accuracy of the Tafel Extrapolation Method in HCl Solutions, Corros. Sci., 2009, 51(5), p 1043–1054.

    Article  CAS  Google Scholar 

  49. M.A. Amin, K.F. Khaled, and S.A. Fadl-Allah, Testing Validity of the Tafel Extrapolation Method for Monitoring Corrosion of Cold Rolled Steel in HCl Solutions—Experimental and Theoretical Studies, Corros. Sci., 2010, 52(1), p 140–151.

    Article  CAS  Google Scholar 

  50. Y. Song, G. Jiang, Y. Chen, P. Zhao, and Y. Tian, Effects of Chloride Ions on Corrosion of Ductile Iron and Carbon Steel in Soil Environments, Sci. Rep., 2017, 7(1), p 6865.

    Article  Google Scholar 

  51. E.B. Castro, C.R. Valentini, C.A. Moina, J.R. Vilche, and A.J. Arvia, The Influence of Ionic Composition on the Electrodissolution and Passivation of Iron Electrodes in Potassium Carbonate-Bicarbonate Solutions in the 8.4-10.5 pH range at 25 °C, Corros. Sci., 1986, 26(10), p 781–793.

    Article  CAS  Google Scholar 

  52. S. Simard, M. Drogowska, H. Me´Nard, and L. Brossard, Electrochemical Behaviour of 1024 Mild Steel in Slightly Alkaline Bicarbonate Solutions, J. Appl. Electrochem., 1997, 27(3), p 317–324.

    Article  CAS  Google Scholar 

  53. A.Q. Fu and Y.F. Cheng, Electrochemical Polarization Behavior of X70 Steel in Thin Carbonate/Bicarbonate Solution Layers Trapped under a Disbonded Coating and its Implication on Pipeline SCC, Corros. Sci., 2010, 52(7), p 2511–2518.

    Article  CAS  Google Scholar 

  54. X. Hao, J. Dong, I.-I. Etim, J. Wei, and W. Ke, Sustained Effect of Remaining Cementite on the Corrosion Behavior of Ferrite-pearlite Steel under the Simulated Bottom Plate Environment of Cargo Oil Tank, Corros. Sci., 2016, 110, p 296–304.

    Article  CAS  Google Scholar 

  55. M. Kadowaki, I. Muto, K. Takahashi, T. Doi, H. Masuda, H. Katayama, K. Kawano, Y. Sugawara, and N. Hara, Anodic Polarization Characteristics and Electrochemical Properties of Fe<sub>3</sub>C in Chloride Solutions, J. Electrochem. Soc., 2019, 166(12), p C345–C351.

    Article  CAS  Google Scholar 

  56. Z. Wang, X. Zhang, L. Cheng, J. Liu, and K. Wu, Role of Inclusion and Microstructure on Corrosion Initiation and Propagation of Weathering Steels in Marine Environment, J. Market. Res., 2021, 10, p 306–321.

    CAS  Google Scholar 

  57. J. Wei, J.H. Dong, W. Ke, and X.Y. He, Influence of Inclusions on Early Corrosion Development of Ultra-Low Carbon Bainitic Steel in NaCl Solution, Corrosion, 2015, 71(12), p 1467–1480.

    Article  CAS  Google Scholar 

  58. B. Forero, M.M.G. Núñez, and I. Bott, Analysis of the Corrosion Scales Formed on API 5L X70 and X80 Steel Pipe in the Presence of CO2, Mater. Res., 2012, 17, p 461–471.

    Article  Google Scholar 

  59. M. Morcillo, B. Chico, J. Alcántara, I. Díaz, R. Wolthuis, and D. de la Fuente, SEM/Micro-Raman Characterization of the Morphologies of Marine Atmospheric Corrosion Products Formed on Mild Steel, J. Electrochem. Soc., 2016, 163(8), p C426–C439.

    Article  CAS  Google Scholar 

  60. A. Raman, S. Nasrazadani, and L. Sharma, Morphology of Rust Phases Formed on Weathering Steels in Various Laboratory Corrosion Tests, Metallography, 1989, 22(1), p 79–96.

    Article  CAS  Google Scholar 

  61. R.A. Antunes, R.U. Ichikawa, L.G. Martinez, and I. Costa, Characterization of Corrosion Products on Carbon Steel Exposed to Natural Weathering and to Accelerated Corrosion Tests, Int. J. Corros., 2014, 2014, p 419570.

    Article  Google Scholar 

  62. A.C. Larson, R.B. Von Dreele, General Structure Analysis System (GSAS)(Report LAUR 86-748), Los Alamos, New Mexico: Los Alamos National Laboratory, (2004)

  63. B.W.A. Sherar, P.G. Keech, Z. Qin, F. King, and D.W. Shoesmith, Nominally Anaerobic Corrosion of Carbon Steel in Near-Neutral pH Saline Environments, Corrosion, 2010, 66(4), p 045001–045001.

    Article  Google Scholar 

  64. J. Gu, Y. Xiao, N. Dai, X. Zhang, Q. Ni, and J. Zhang, The Suppression of Transformation of γ-FeOOH to α-FeOOH Accelerating the Steel Corrosion in Simulated Industrial Atmospheric Environment with a DC Electric Field Interference, Corros. Eng. Sci. Technol., 2019, 54(3), p 249–256.

    Article  CAS  Google Scholar 

  65. J.M. McIntyre and H.Q. Pham, Electrochemical Impedance Spectroscopy; a Tool for Organic Coatings Optimizations, Prog. Org. Coat., 1996, 27(1), p 201–207.

    Article  CAS  Google Scholar 

  66. F. Mansfeld, Use of Electrochemical Impedance Spectroscopy for the Study of Corrosion Protection by Polymer Coatings, J. Appl. Electrochem., 1995, 25(3), p 187–202.

    Article  Google Scholar 

  67. Y. Deo, R. Ghosh, A. Nag, D.V. Kumar, R. Mondal, and A. Banerjee, Direct and Pulsed Current Electrodeposition of Zn-Mn Coatings from Additive-Free Chloride Electrolytes for Improved Corrosion Resistance, Electrochim. Acta, 2021, 399, p 139379.

    Article  CAS  Google Scholar 

  68. G.S. Frankel, T. Li, and J.R. Scully, Perspective—Localized Corrosion: Passive Film Breakdown versus Pit Growth Stability, J. Electrochem. Soc., 2017, 164(4), p C180–C181.

    Article  CAS  Google Scholar 

  69. C.A. Gervasi, M.E. Folquer, A.E. Vallejo, and P.E. Alvarez, Electron Transfer Across Anodic Films Formed on Tin in Carbonate-Bicarbonate Buffer Solution, Electrochim. Acta, 2005, 50(5), p 1113–1119.

    Article  CAS  Google Scholar 

  70. N. Sato, Chapter 8—Electrode Reactions In Electron Transfer, Electrochemistry at Metal and Semiconductor Electrodesed., N. Sato, Ed., Elsevier Science, 1998, p 235-288

  71. X.-C. Han, J. Li, K.-Y. Zhao, W. Zhang, and J. Su, Effect of Chloride on Semiconducting Properties of Passive Films Formed on Supermartensitic Stainless Steel in NaHCO3 Solution, J. Iron Steel Res. Int., 2013, 20(5), p 74–79.

    Article  CAS  Google Scholar 

  72. I.G. Ogunsanya and C.M. Hansson, The Semiconductor Properties of Passive Films and Corrosion Behavior of Stainless Steel Reinforcing Bars in Simulated Concrete Pore Solution, Materialia, 2019, 6, p 100321.

    Article  CAS  Google Scholar 

  73. D.L.A. de Faria, S. Venâncio Silva, and M.T. de Oliveira, Raman Microspectroscopy of Some Iron Oxides and Oxyhydroxides, J. Raman Spectrosc., 1997, 28(11), p 873–878.

    Article  Google Scholar 

  74. S.J. Oh, D.C. Cook, and H.E. Townsend, Characterization of Iron Oxides Commonly Formed as Corrosion Products on Steel, Hyperfine Interact., 1998, 112(1), p 59–66.

    Article  CAS  Google Scholar 

  75. X. Zhang, K. Xiao, C. Dong, J. Wu, X. Li, and Y. Huang, In Situ Raman Spectroscopy Study of Corrosion Products on the Surface of Carbon Steel in Solution Containing Cl− and SO42, Eng. Fail. Anal., 2011, 18(8), p 1981–1989.

    Article  CAS  Google Scholar 

  76. P. Dillmann, F. Mazaudier, and S. Hœrlé, Advances in Understanding Atmospheric Corrosion of Iron. I. Rust Characterisation of Ancient Ferrous Artefacts Exposed to Indoor Atmospheric Corrosion, Corros. Sci., 2004, 46(6), p 1401–1429.

    Article  CAS  Google Scholar 

  77. U. Schwertmann, R.M. Taylor, Iron Oxides, Minerals in Soil Environmentsed., 1989, p 379-438

  78. P. Bénézeth, J.L. Dandurand, and J.C. Harrichoury, Solubility Product of Siderite (FeCO3) as a Function of Temperature (25-250 °C), Chem. Geol., 2009, 265(1), p 3–12.

    Article  Google Scholar 

  79. S. Hœrlé, F. Mazaudier, P. Dillmann, and G. Santarini, Advances in Understanding Atmospheric Corrosion of Iron. II. Mechanistic Modelling of Wet–Dry Cycles, Corros. Sci., 2004, 46(6), p 1431–1465.

    Article  Google Scholar 

Download references

Acknowledgments

We sincerely appreciate Tata Steel, Jamshedpur, India, for the necessary financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rishav Ghosh.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, R., Chinara, M., Godbole, K. et al. Electrochemical Behavior of X70 and X80 Pipeline Steels in a Simulated Soil Environment with and without the Presence of Chlorides. J. of Materi Eng and Perform (2023). https://doi.org/10.1007/s11665-023-08536-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11665-023-08536-7

Keywords

Navigation