Skip to main content
Log in

A comparative study on characterization and photocatalytic activities of gadolinium–boron codoped and mono-doped TiO2 nanoparticles

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Gadolinium–boron codoped and mono-doped TiO2 nanoparticles were prepared using a sol–gel method, and tested for photocatalytic activity by the UV light after a further calcination process. For comparison, a pure TiO2 sample was also prepared and tested under the same conditions. The prepared catalysts were characterized by X-ray diffraction, scanning electron microscope, and UV–Vis spectra. The photocatalytic activity of the samples was evaluated through the photo-degradation of three different dyes under UV light. The experiments demonstrated that the gadolinium–boron codoped TiO2 (Gd–B–TiO2) sample calcined at 500 °C possessed the best photocatalytic activity, and the photodegradation rate of the Reactive Brilliant Red K2G aqueous solution could reach to 95.7% under UV irradiation for 80 min. The results showed that Gd–B–TiO2 has smaller crystallite size and higher photocatalytic activity than that of mono-doped TiO2 samples and undoped TiO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Science 293, 269 (2001)

    Article  CAS  Google Scholar 

  2. A.L. Linsebigler, G. Lu, J.T. Yates Jr, Chem. Rev. 95, 735–758 (1995)

    Article  CAS  Google Scholar 

  3. X.L. Yuan, J.L. Zhang, M. Anpo, D.N. He, Res. Chem. Intermed. 36, 83–93 (2010)

    Article  CAS  Google Scholar 

  4. J. Zhu, F. Chen, J. Zhang, H. Chen, M. Anpo, J. Photochem. Photobiol. A 180, 196–204 (2006)

    Article  CAS  Google Scholar 

  5. X. Wang, J.C. Yu, Y. Chen, L. Wu, X. Fu, Environ. Sci. Technol. 40, 2369–2374 (2006)

    Article  CAS  Google Scholar 

  6. J.H. Pan, W.I. Lee, Chem. Mater. 18, 847–853 (2006)

    Article  CAS  Google Scholar 

  7. H. Choi, M.G. Antoniou, M. Pelaez, A. Armah, J.A. Shoemaker, D.D. Dionysiou, Environ. Sci. Technol. 41, 7530–7535 (2007)

    Article  CAS  Google Scholar 

  8. F. Li, X. Li, M. Hou, Appl. Catal. B 48, 185–194 (2004)

    Article  CAS  Google Scholar 

  9. M. Zalas, M. Laniecki, Sol. Energy Mater. Sol. Cells 89, 287–296 (2005)

    Article  CAS  Google Scholar 

  10. Y. Wang, H. Cheng, L. Zhang, Y. Hao, J. Ma, B. Xu, W. Li, J. Mol. Catal. A 151, 205–216 (2000)

    Article  CAS  Google Scholar 

  11. Y. Xie, C. Yuan, Appl. Catal. B 46, 251–259 (2003)

    Article  CAS  Google Scholar 

  12. C. Liang, C. Liu, F. Li, F. Wu, Chem. Eng. J. 147, 219–225 (2009)

    Article  CAS  Google Scholar 

  13. Y. Zhang, H. Xu, Y. Xu, H. Zhang, Y. Wang, J. Photochem. Photobiol. A 170, 279–285 (2005)

    Article  CAS  Google Scholar 

  14. J. Xu, Y. Ao, D. Fu, C. Yuan, Colloids Surf. A 334, 107–111 (2009)

    Article  CAS  Google Scholar 

  15. D. Zhao, T. Peng, M. Liu, L. Lu, P. Cai, Microporous Mesoporous Mater. 114, 166–174 (2008)

    Article  CAS  Google Scholar 

  16. Y. Cong, J. Zhang, F. Chen, M. Anpo, J. Phys. Chem. C 111, 6976–6982 (2007)

    Article  CAS  Google Scholar 

  17. H. Irie, Y. Watanabe, K. Hashimoto, Chem. Lett. 32, 772–773 (2003)

    Article  CAS  Google Scholar 

  18. W. Ho, J.C. Yu, S. Lee, J. Solid State Chem. 179, 1171–1176 (2006)

    Article  CAS  Google Scholar 

  19. L. Lin, W. Lin, Y. Zhu, B. Zhao, Y. Xie, Chem. Lett. 34, 284–285 (2005)

    Article  CAS  Google Scholar 

  20. E. Grabowska, A. Zaleska, J.W. Sobczak, M. Gazda, J. Hupka, Appl. Catal. B 78, 92–100 (2008)

    Article  Google Scholar 

  21. H. Geng, S. Yin, X. Yang, Z. Shuai, B. Liu, J. Phys. Condens. Matter 18, 87 (2006)

    Article  CAS  Google Scholar 

  22. D. Chen, D. Yang, Q. Wang, Z. Jiang, Ind. Eng. Chem. Res. 45, 4110–4116 (2006)

    Article  CAS  Google Scholar 

  23. S. In, A. Orlov, R. Berg, F. Garcia, S. Pedrosa-Jimenez, M.S. Tikhov, D.S. Wright, R.M. Lambert, J. Am. Chem. Soc. 129, 13790–13791 (2007)

    Article  CAS  Google Scholar 

  24. W. Zhao, W. Ma, C. Chen, J. Zhao, Z. Shuai, J. Am. Chem. Soc. 126, 4782–4783 (2004)

    Article  CAS  Google Scholar 

  25. C. Lv, Y. Zhou, H. Li et al., Appl. Surf. Sci. 257, 5104–5108 (2011)

    Article  CAS  Google Scholar 

  26. M. Mahalakshmi, B. Arabindoo, M. Palanichamy, V. Murugesan, J. Nanosci. Nanotechnol. 7, 3277–3285 (2007)

    Article  CAS  Google Scholar 

  27. R. Ma, T. Sasaki, Y. Bando, Chem. Commun. 41, 948–950 (2005)

    Google Scholar 

  28. L. Deng, Y. Chen, M. Yao et al., J. Sol-Gel. Sci. Technol. 53, 535–541 (2010)

    Article  CAS  Google Scholar 

  29. A. Zaleska, J. Sobczak, E. Grabowska, J. Hupka, Appl. Catal. B 78, 92–100 (2007)

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 20571025), Nature Science Foundation of Henan Province (No. 0424270073).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinshu Niu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Niu, X., Lu, X., Cui, T. et al. A comparative study on characterization and photocatalytic activities of gadolinium–boron codoped and mono-doped TiO2 nanoparticles. Res Chem Intermed 38, 807–816 (2012). https://doi.org/10.1007/s11164-011-0419-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-011-0419-3

Keywords

Navigation