Skip to main content
Log in

Preparation and characterization of Cu-doped TiO2 nanomaterials with anatase/rutile/brookite triphasic structure and their photocatalytic activity

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Pure TiO2 and Cu–doped TiO2 containing different amounts of copper ions with anatase/rutile/brookite triphasic structure were successfully synthesized through a simple hydrothermal method. The obtained samples were characterized by X–ray diffraction (XRD), Raman spectroscopy, scanning electron microscope (SEM), transmission electron microscope (TEM), X–ray photoelectron spectroscopy (XPS), UV−vis diffuse reflectance spectroscopy (UV-DRS), photoluminescence spectroscopy (PL) and Brunauer–Emmett–Teller surface area analyze (BET). Both pure and Cu–doped TiO2 show relatively high photocatalytic activity owing to their considerable surface areas. Moreover, the three–phase coexisting structure and the conversion between Cu2+ and Cu+ ions facilitate the separation of photogenerated electrons and holes, which is favorable for photocatalytic performance. 1%Cu–TiO2 exhibits the highest photocatalytic activity and the degradation degree of rhodamine B (RhB) reaches 93.5% after 30 min, which is higher than that of monophasic/biphasic 1%Cu–TiO2. ·O2 radical is the main active species, and h+ and ·OH species are subsidiary in the degradation process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig.11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. S.M. Adyani, M. Ghorbani, J. rare Earth. 36, 72–85 (2018)

    Article  CAS  Google Scholar 

  2. N. Wei, H.Z. Cui, Q. Song, L.Q. Zhang, X.J. Song, K. Wang, Y.F. Zhang, J. Li, J. Wen, J. Tian, Appl. Catal. B Environ 198, 83–90 (2016)

    Article  CAS  Google Scholar 

  3. X.D. Zhu, L.X. Pei, R.R. Zhu, Y. Jiao, R.Y. Tang, W. Feng, Sci. Rep. 8, 14249–14257 (2018)

    Article  CAS  Google Scholar 

  4. D.V. Dao, M.V.D. Bremt, Z. Koeller, T.K. Le, Powder Technol. 288, 366–370 (2016)

    Article  CAS  Google Scholar 

  5. T.H. Le, A.T. Bui, T.K. Le, Powder Technol. 268, 173–176 (2014)

    Article  CAS  Google Scholar 

  6. D. Yang, Y.Y. Sun, Z.W. Tong, Y.H. Nan, Z.Y. Jiang, J. Hazard. Mater. 312, 45–54 (2016)

    Article  CAS  Google Scholar 

  7. A.M. Abdulkarem, E.M. Elssfah, N.N. Yan, G. Demissie, Y. Yu, J. Phys. Chem. Solids 74, 647–652 (2013)

    Article  CAS  Google Scholar 

  8. V.B.R. Boppana, R.F. Lobo, J. Catal. 281(1), 156–168 (2011)

    Article  CAS  Google Scholar 

  9. F.C. Correia, M. Calheiros, J. Marques, J.M. Ribeiro, C.J. Tavares, Ceram. Int. 44, 22638–22644 (2018)

    Article  CAS  Google Scholar 

  10. H.L. Wang, X.Y. Gao, G.R. Duan, X.J. Yang, X.H. Liu, J. Environ. Chem. Eng. 3, 603–608 (2015)

    Article  CAS  Google Scholar 

  11. Y.F. Zhang, F. Fu, Y.Z. Li, D.S. Zhang, Y.Y. Chen, Nanomaterials 8, 1032 (2018)

    Article  CAS  Google Scholar 

  12. Z.L. Yang, J. Lu, W.C. Ye, C.S. Yu, Y.L. Chang, Appl. Surf. Sci. 392, 472–480 (2017)

    Article  CAS  Google Scholar 

  13. M.R.D. Khaki, M.S. Shafeeyan, A.A.A. Raman, W.M.A.W. Daud, J. Mol. Liq. 258, 354–365 (2018)

    Article  CAS  Google Scholar 

  14. M.C. Wu, P.Y. Wu, T.H. Lin, T.F. Lin, Appl. Surf. Sci. 430, 390–398 (2018)

    Article  CAS  Google Scholar 

  15. H. Li, X.J. Shen, Y.D. Liu, L.Z. Wang, J.Y. Lei, J.L. Zhang, J. Alloy. Compd. 646, 380–386 (2015)

    Article  CAS  Google Scholar 

  16. Y.F. Cao, X.T. Li, Z.F. Bian, A. Fuhr, D.Q. Zhang, J. Zhu, Appl. Catal. B-Environ. 180, 551–558 (2016)

    Article  CAS  Google Scholar 

  17. R. Kaplan, B. Erjavec, G. Dražić, J. Grdadolnikc, A. Pintar, Appl. Catal. B-Environ. 181, 465–474 (2016)

    Article  CAS  Google Scholar 

  18. T. Aguilar, J. Navas, R. Alcántara, C. Fernández-Lorenzo, J.J. Gallardo, G. Blanco, J. Martín-Calleja, Chem. Phys. Lett. 571, 49–53 (2013)

    Article  CAS  Google Scholar 

  19. Y.P. Zhang, C.X. Pan, J. Mater. Sci. 46, 2622–2626 (2011)

    Article  CAS  Google Scholar 

  20. L.K. Preethi, T. Mathews, M. Nand, S.N. Jha, C.S. Gopinath, S. Dash, Appl. Catal. B-Environ. 218, 9–19 (2017)

    Article  CAS  Google Scholar 

  21. H.Z. Zhang, J.F. Banfield, J. Phys. Chem. B 104, 3481–3487 (2000)

    Article  CAS  Google Scholar 

  22. V. Uvarov, I. Popov, Mater. Charact. 58, 883–891 (2007)

    Article  CAS  Google Scholar 

  23. B.K. Mutuma, G.N. Shao, W.D. Kim, H.T. Kim, J. Colloid. Interf. Sci. 442, 1–7 (2015)

    Article  CAS  Google Scholar 

  24. P.M. Dong, X.D. Cheng, Z.F. Huang, Y. Chen, Y.Z. Zhang, X.X. Nie, X.W. Zhang, Mater. Rsc. Bull. 97, 89–95 (2018)

    Article  CAS  Google Scholar 

  25. X.J. Yang, S. Wang, H.M. Sun, X.B. Wang, J.S. Lian, T. Nonferr, Metal. Soc. 25, 504–509 (2015)

    CAS  Google Scholar 

  26. J.L. Li, X.T. Xu, X.J. Liu, C.Y. Yu, D. Yan, Z. Sun, L.K. Pan, J. Alloy. Compd. 679, 454–462 (2016)

    Article  CAS  Google Scholar 

  27. O. Avílés-García, J. Espino-Valencia, R. Romero, J.L. Rico-Cerda, M. Arroyo-Albiter, R. Natividad, Fuel 198, 31–41 (2017)

    Article  CAS  Google Scholar 

  28. Z.M. Wang, B. Liu, Z.X. Xie, Y.M. Li, Z.Y. Shen, Ceram. Int. 42, 13664–13669 (2016)

    Article  CAS  Google Scholar 

  29. G. Córdoba, M. Viniegra, J.L.G. Fierro, J. Padilla, R. Arroyo, J. Solid State Chem. 138, 1–6 (1998)

    Article  Google Scholar 

  30. R. Bashiri, N.M. Mohamed, C.F. Kait, S. Sufian, M. Khatani, J. Environ. Chem. Eng. 5, 3207–3214 (2017)

    Article  CAS  Google Scholar 

  31. M. Shaban, A.M. Ashraf, M.R. Abukhadra, Sci. Rep. 8, 781 (2018)

    Article  CAS  Google Scholar 

  32. J. Tauc, R. Grigorovici, A. Vancu, Phys. Status Solidi B 15, 627–637 (1966)

    Article  CAS  Google Scholar 

  33. P. Makal, D. Das, Appl. Surf. Sci. 455, 1106–1115 (2018)

    Article  CAS  Google Scholar 

  34. Y.Z. Wang, Y.S. Wu, H. Yang, X.X. Xue, Z.H. Liu, Vacuum 131, 58–64 (2016)

    Article  CAS  Google Scholar 

  35. J. Singh, A.K. Manna, R.K. Soni, J. Mater. Sci-Mater. El. 30, 16478–16493 (2019)

    Article  CAS  Google Scholar 

  36. X. Fan, J. Wan, E.Z. Liu, L. Sun, Y. Hu, H. Li, X.Y. Hu, J. Fan, Ceram. Int. 41, 5107–5116 (2015)

    Article  CAS  Google Scholar 

  37. X.F. Lei, X.X. Xue, H. Yang, Appl. Surf. Sci. 321, 396–403 (2014)

    Article  CAS  Google Scholar 

  38. B. Appavu, S. Thiripuranthagan, Visible active N. J. Photoch. Photobio. A 340, 146–156 (2017)

    CAS  Google Scholar 

  39. B.K. Kaleji, S. Mirzaee, S. Ghahramani, S. Rezaie, N. Hosseinabadi, A. Fujishima, J. Mater. Sci-Mater. El. 29, 12351–12359 (2018)

    Article  CAS  Google Scholar 

  40. C.P. Sibu, S.R. Kumar, P. Mukundan, K.G.K. Warrier, Chem. Mater. 14, 2876–2881 (2002)

    Article  CAS  Google Scholar 

  41. T. Ali, A. Ahmed, U. Alam, I. Uddin, P. Tripathi, M. Muneer, Matrer Chem. Phys. 212, 325–335 (2018)

    Article  CAS  Google Scholar 

  42. S. Sood, A. Umar, S.K. Mehta, S.K. Kansal, J. Colloid Interf. Sci. 450, 213–223 (2015)

    Article  CAS  Google Scholar 

  43. X.X. Lin, F. Rong, D.G. Fu, C.W. Yuan, Powder Technol. 219, 173–178 (2012)

    Article  CAS  Google Scholar 

  44. V. Krishnakumar, S. Boobas, J. Jayaprakash, M. Rajaboopathi, B. Han, M. Louhi-Kultanen, J. Mater. Sci-Mater. El. 27, 7438–7447 (2016)

    Article  CAS  Google Scholar 

  45. X.D. Zhu, R.R. Zhu, L.X. Pei, H. Liu, L. Xu, J. Wang, W. Feng, Y. Jiao, W.M. Zhang, J. Mater. Sci-Mater. El. 30, 21210–21218 (2019)

    Article  CAS  Google Scholar 

  46. Z.H. Fan, F.M. Meng, J.F. Gong, H.J. Li, Z.L. Ding, B. Ding, J. Mater. Sci-Mater. El. 27, 11866–11872 (2016)

    Article  CAS  Google Scholar 

  47. Y. Zhang, T. Wang, M. Zhou, Y. Wang, Z.M. Zhang, Ceram. Int. 43, 3118–3126 (2017)

    Article  CAS  Google Scholar 

  48. J. Li, Y.J. Wan, Y.J. Li, G. Yao, B. Lai, Appl. Catal. B-Environ. 256, 117782 (2019)

    Article  CAS  Google Scholar 

  49. J.X. Qin, J. Wang, J.J. Yang, Y. Hu, M.L. Fu, D.Q. Ye, Appl. Catal. B-Environ. 267, 118667 (2020)

    Article  CAS  Google Scholar 

  50. M.R.D. Khaki, M.S. Shafeeyan, A.A.A. Raman, W.M.A.W. Daud, J. Mater. Sci-Mater. El. 29, 5480–5495 (2018)

    Article  CAS  Google Scholar 

  51. M.R.D. Khaki, M.S. Shafeeyan, J. Nanophotonics. 14, 036015 (2020)

    Article  CAS  Google Scholar 

  52. H.W.P. Carvalho, M.V.J. Rocha, P. Hammer, T.C. Ramalho, J. Mater. Sci. 48, 3904–3912 (2013)

    Article  CAS  Google Scholar 

  53. M.R.D. Khaki, M.S. Shafeeyan, A.A.A. Raman, W.M.A.W. Daud, J. Environ. Manage. 198, 78–94 (2017)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This project was funded by the Applied Basic Research Programs of Sichuan Province (Grant Nos. 2019YJ0664, 2018JY0062), the Chengdu Technology Innovation Research and Development Project of Chengdu City (Grant No. 2019-YFYF-00013-SN) and the Training Program for Innovation of Sichuan Province (CDU-CX-2021527, S202011079053).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Feng or Shanhua Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, X., Zhou, Q., Xia, Y. et al. Preparation and characterization of Cu-doped TiO2 nanomaterials with anatase/rutile/brookite triphasic structure and their photocatalytic activity. J Mater Sci: Mater Electron 32, 21511–21524 (2021). https://doi.org/10.1007/s10854-021-06660-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06660-5

Navigation