Skip to main content

Advertisement

Log in

Improving growth, omega-3 contents, and disease resistance of Asian seabass: status of a 20-year family-based breeding program

  • Reviews
  • Published:
Reviews in Fish Biology and Fisheries Aims and scope Submit manuscript

Abstract

Aquaculture has been one of the fastest-growing sectors in agriculture and plays an important role in supplying high quality proteins for humans. Genetic improvement for important traits is essential for increasing aquaculture production. The aquaculture of Asian seabass (Lates calcarifer) has become important in Southeast Asia and Australia and has expanded to other countries. In Singapore, a breeding program was initiated in 2004, aimed at improving growth rates, high omega-3 content, and disease resistance within Asian seabass populations. Many genomic resources have been developed to achieve these goals. The breeding program was established with a broodstock of 549 broodfish collected from the wilds of Indonesia, Thailand, Malaysia, and Singapore. Through four generations of family-based selection, utilizing a combination of conventional selective breeding, molecular parentage analysis, marker-assisted selection, and genomic selection techniques, three distinct elite lines of Asian seabass were successfully established. Each line consisted of approximately 200 broodfish. These lines were selected for growth, higher omega-3 content, and disease resistance, respectively. These traits have been improved without dramatically reducing genetic variation. This review provides a comprehensive overview of the methodologies adopted and status of the genetic improvement of the above-mentioned traits. Concurrently, certain gaps in the existing body of research have been identified. In the future, additional traits related to the ability to use feeds with reduced fishmeal, as well as adaptation to climate change and resistance against emerging diseases should be included in the breeding program.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data supporting the findings of this study are available in cited papers in article and its supplementary information files.

Code availability

Not applicable.

References

  • Ambali AJD, Doyle RW (1997) Genetic diversity analysis of Oreochromis shiranus species in reservoirs in Malawi. Colloquium on Genetics and Aquaculture in Africa, Abidjan, Cote Ivoire, pp 211–226

    Google Scholar 

  • Araujo BC, Symonds JE, Glencross BD, Carter CG, Walker SP, Miller MR (2021) A review of the nutritional requirements of chinook salmon (Oncorhynchus tshawytscha). N Z J Mar Freshw Res 57:161–190

    Article  Google Scholar 

  • Bakri AM, Esa Y (2021) Analysis of genetic diversity in five captive population of Asian Seabass (Lates calcarifer) for selective breeding in Malaysia, 1ST postgraduate seminar on agriculture and forestry 2021 (PSAF 2021), pp 71

  • Behera BK, Singh SD, Sahu B, Singh NS, Das P, Maharana J, Sharma AP (2014) Genetic diversity of Asian sea bass, Lates calcarifer (Bloch) populations in India revealed by randomly amplified polymorphic DNA. Proc Natl Acad Sci India Sect B Biol Sci 84:1013–1019

    Article  Google Scholar 

  • Berlinsky DL, Kenter LW, Reading BJ, Goetz FW (2020) Regulating reproductive cycles for captive spawning. Fish physiology. Elsevier, pp 1–52

  • Boler DD (2014) Species of meat animals: pigs. In: Dikeman M, Devine C (eds) Encyclopaedia of meat sciences. Elsevier, London, pp 363–368

    Chapter  Google Scholar 

  • Boonyaratpalin M, Williams K, Webster CandLim C (2002) Asian sea bass, Lates calcarifer. In: Webster CD, Lim C (Eds) Nutrient Requirements and Feeding of Finfish for Aquaculture, New York, USA, pp 40–51

  • Boudry P, Allal F, Aslam ML, Bargelloni L, Bean TP, Brard-Fudulea S, Brieuc MS, Calboli FC, Gilbey J, Haffray P (2021) Current status and potential of genomic selection to improve selective breeding in the main aquaculture species of International Council for the Exploration of the Sea (ICES) member countries. Aquac Rep 20:100700

    Article  Google Scholar 

  • Burdge GC, Calder PC (2005) Conversion of -linolenic acid to longer-chain polyunsaturated fatty acids in human adults. Reprod Nutr Dev 45:581–597

    Article  CAS  PubMed  Google Scholar 

  • Calder PC (2013) Omega-3 polyunsaturated fatty acids and inflammatory processes: nutrition or pharmacology? Br J Clin Pharmacol 75:645–662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campoy C, Escolano-Margarit MV, Anjos T, Szajewska HR (2012) Omega 3 fatty acids on child growth, visual acuity and neurodevelopment. Br J Nutr 107:S85–S106

    Article  Google Scholar 

  • Cheong L, Yeng L (1987) Status of seabass (Lates calcarifer) culture in Singapore. in: Copland JW, Grey DL (Eds) in Management of wild and cultured seabass/barramundi, Proceedings of an international workshop held at Darwin, N. T. Australia, 24–30 September 198, pp 65–68

  • Cuzon G, Chou R, Fuchs J (1989) Nutrition of the seabass Lates calcarifer. Advances in Tropical Aquaculture, Workshop at Tahiti, French Polynesia, 20 Feb-4 Mar 1989

  • de Groof A, Guelen L, Deijs M, van der Wal Y, Miyata M, Ng KS, van Grinsven L, Simmelink B, Biermann Y, Grisez L (2015) A novel virus causes scale drop disease in Lates calcarifer. PLoS Pathog 11:e1005074

    Article  PubMed  PubMed Central  Google Scholar 

  • Delgado-Lista J, Perez-Martinez P, Lopez-Miranda J, Perez-Jimenez F (2012) Long chain omega-3 fatty acids and cardiovascular disease: a systematic review. Br J Nutr 107:S201–S213

    Article  Google Scholar 

  • Domingos JA, Smith-Keune C, Harrison P, Jerry DR (2014) Early prediction of long-term family growth performance based on cellular processes—A tool to expedite the establishment of superior foundation broodstock in breeding programs. Aquaculture 428:88–96

    Article  Google Scholar 

  • Elvy JE, Symonds JE, Hilton Z, Walker SP, Tremblay LA, Casanovas P, Herbert NA (2022) The relationship of feed intake, growth, nutrient retention, and oxygen consumption to feed conversion ratio of farmed saltwater Chinook salmon (Oncorhynchus tshawytscha). Aquaculture 554:738184

    Article  CAS  Google Scholar 

  • FAO (2009) Lates calcarifer. In: Cultured aquatic species fact sheets. https://www.fao.org/fishery/docs/DOCUMENT/aquaculture/CulturedSpecies/file/en/en_barramundi.htm, Rome, Italy

  • FAO (2022) The state of world fisheries and aquaculture. FAO, Rome, Italy

  • Frost LA, Evans BS, Jerry DR (2006) Loss of genetic diversity due to hatchery culture practices in barramundi (Lates calcarifer). Aquaculture 261:1056–1064

    Article  CAS  Google Scholar 

  • Fu G, Yuna Y (2022) Phenotyping and phenomics in aquaculture breeding. Aquac Fish 7:140–146

    Article  Google Scholar 

  • Galappaththi EK, Ichien ST, Hyman AA, Aubrac CJ, Ford JD (2020) Climate change adaptation in aquaculture. Rev Aquac 12:2160–2176

    Article  Google Scholar 

  • Garlock T, Asche F, Anderson J, Ceballos-Concha A, Love DC, Osmundsen TC, Pincinato RBM (2022) Aquaculture: the missing contributor in the food security agenda. Glob Food Secur 32:100620

    Article  Google Scholar 

  • Geldermann H, Pieper U, Roth B (1985) Effects of marked chromosome sections on milk performance in cattle. Theor Appl Genet 70:138–146

    Article  CAS  PubMed  Google Scholar 

  • Gil M, Crespo PS (2012) Omega 3 fatty acids and inborn errors of metabolism. Br J Nutr 107:S129–S136

    Article  Google Scholar 

  • Gjedrem T (2000) Genetic improvement of cold-water fish species. Aquac Res 31:25–33

    Article  Google Scholar 

  • Gjedrem T (2005) Selection and breeding programs in aquaculture. Springer, Dordrecht

    Book  Google Scholar 

  • Gjedrem T, Robinson N, Rye M (2012) The importance of selective breeding in aquaculture to meet future demands for animal protein: a review. Aquaculture 350:117–129

    Article  Google Scholar 

  • Hickey J, Gorjanc G, Cleveland M, Kranis A, Jenko J, Mésázros G (2013) Sequencing millions of animals for genomic selection 2.0. J Anim Breed Genet 130:331–332

    Article  CAS  PubMed  Google Scholar 

  • Houston RD, Bean TP, Macqueen DJ, Gundappa MK, Jin YH, Jenkins TL, Selly SLC, Martin SA, Stevens JR, Santos EM (2020) Harnessing genomics to fast-track genetic improvement in aquaculture. Nat Rev Genet 21:389–409

    Article  CAS  PubMed  Google Scholar 

  • Hutson KS (2013) Infectious diseases of Asian seabass and health management. In: DR J. (Ed) Biology and culture of Asian Seabass Lates calcarifer. CRC Press, Taylor and Francis Group, USA, pp 102–136

  • Janssen K, Chavanne H, Berentsen P, Komen H (2017) Impact of selective breeding on European aquaculture. Aquaculture 472:8–16

    Article  Google Scholar 

  • Jerry DR (2013) Biology and culture of Asian seabass Lates calcarifer. CRC Press, Singapore

    Book  Google Scholar 

  • Joerakate W, Yenmak S, Senanan W, Tunkijjanukij S, Koonawootrittriron S, Poompuang S (2018) Growth performance and genetic diversity in four strains of Asian sea bass, Lates calcarifer (Bloch, 1790) cultivated in Thailand. Agric Natur Res 52:93–98

    Google Scholar 

  • Khang PV, Phuong TH, Dat NK, Knibb W, Nguyen NH (2018) An 8-year breeding program for Asian seabass Lates calcarifer: genetic evaluation, experiences, and challenges. Front Genet 9:191

    Article  PubMed  PubMed Central  Google Scholar 

  • Kingsbury N (2011) Hybrid: the history and science of plant breeding. University of Chicago Press

    Google Scholar 

  • Kocour M, Gela D, Rodina M, Flajshans M (2010) Performance of different tench, Tinca tinca (L.), groups under semi-intensive pond conditions: it is worth establishing a coordinated breeding program. Rev Fish Biol Fish 20:345–355

    Article  Google Scholar 

  • Li Y, Chia JM, Bartfai R, Christoffels A, Yue GH, Ding K, Ho MY, Hill JA, Stupka E, Orban L (2004) Comparative analysis of the testis and ovary transcriptomes in zebrafish by combining experimental and computational tools. Comp Funct Genom 5:403–418

    Article  Google Scholar 

  • Lim L, Heng H, Lee H (1986) The induced breeding of seabass, Lates calcarifer (Bloch) in Singapore. Singap J Prim Indust 14:81–95

    Google Scholar 

  • Lin G, Thevasagayam NM, Wan ZY, Ye BQ, Yue GH (2019) Transcriptome analysis identified genes for growth and omega-3/-6 ratio in saline tilapia. Front Genet 10:244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu P, Xia JH, Lin G, Sun F, Liu F, Lim HS, Pang HY, Yue GH (2012) Molecular parentage analysis is essential in breeding Asian seabass. PLoS One 7:e51142

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Liu P, Wang L, Kwang J, Yue GH, Wong SM (2016a) Transcriptome analysis of genes responding to NNV infection in Asian seabass epithelial cells. Fish Shellfish Immunol 54:342–352

    Article  CAS  PubMed  Google Scholar 

  • Liu P, Wang L, Wan ZY, Ye BQ, Huang SQ, Wong SM, Yue GH (2016b) Mapping QTL for resistance against viral nervous necrosis disease in Asian seabass. Mar Biotechnol 18:107–116

    Article  CAS  Google Scholar 

  • Liu P, Wang L, Wong SM, Yue GH (2016c) Fine mapping QTL for resistance to VNN disease using a high-density linkage map in Asian seabass. Sci Rep 6:32122

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Liu P, Xia JH, Sun F, Wang L, Yang Z, Lee M, Pang HY, Wen YF, Yue GH (2023) Breeding Asian seabass to increase survival against big belly disease and growth. Aquac Fish. https://doi.org/10.1016/j.aaf.2022.08.004

  • Loughnan SR, Domingos JA, Smith-Keune C, Forrester JP, Jerry DR, Beheregaray LB, Robinson NA (2013) Broodstock contribution after mass spawning and size grading in barramundi (Lates calcarifer, Bloch). Aquaculture 404:139–149

    Article  Google Scholar 

  • Loughnan SR, Smith-Keune C, Beheregaray LB, Robinson NA, Jerry DR (2019) Population genetic structure of barramundi (Lates calcarifer) across the natural distribution range in Australia informs fishery management and aquaculture practices. Mar Freshw Res 70:1533–1542

    Article  Google Scholar 

  • Lucas JS, Southgate PC, Tucker CS (2019) Aquaculture: Farming aquatic animals and plants. Wiley, New York

    Google Scholar 

  • Macbeth GM, Palmer PJ (2011) A novel breeding programme for improved growth in barramundi Lates calcarifer (Bloch) using foundation stock from progeny-tested parents. Aquaculture 318:325–334

    Article  Google Scholar 

  • Merican Z (2020a) Spearheading research in marine aquaculture in the region. Aquac Asia Pacif 16:26–27

    Google Scholar 

  • Merican Z (2020b) Merger creates largest fully integrated barramundi enterprise. Aquac Asia Pacif 16:5

    Google Scholar 

  • Moore R (1979) Natural sex inversion in the giant perch (Lates calcarifer). Aust J Mar Freshw Res 30:803–813

    Article  Google Scholar 

  • Nash CE (1977) The breeding and cultivation of marine fish species for mariculture, Troisième réunion du groupe de travail du CIEM sur la mariculture/Third meeting of the ICES working group on mariculture–Brest, France–10–13 mai 1977

  • Naylor RL, Hardy RW, Buschmann AH, Bush SR, Cao L, Klinger DH, Little DC, Lubchenco J, Shumway SE, Troell M (2021) A 20-year retrospective review of global aquaculture. Nature 591:551–563

    Article  CAS  PubMed  ADS  Google Scholar 

  • Ng SK, Lau CC, Tan MP, Mohd Nor SA, Danish-Daniel M, Afiqah-Aleng N, Muchlisin ZA, Fadli N (2023) Using a transcriptomic approach to understand poor growth performance in farmed orange-spotted grouper (Epinephelus coioides) larvae: a case study in a commercial hatchery. N Z J Mar Freshw Res: 1–20

  • Ngoh SY, Tan D, Shen X, Kathiresan P, Jiang J, Liew WC, Thevasagayam NM, Kwan HY, Saju JM, Prakki SR (2015) Nutrigenomic and nutritional analyses reveal the effects of pelleted feeds on Asian seabass (Lates calcarifer). PLoS One 10:e0145456

    Article  PubMed  PubMed Central  Google Scholar 

  • Nurliyana M, Lukman B, Ina-Salwany M, Zamri-Saad M, Annas S, Dong H, Rodkhum C, Amal M (2020) First evidence of scale drop disease virus in farmed Asian seabass (Lates calcarifer) in Malaysia. Aquaculture 528:735600

    Article  CAS  Google Scholar 

  • Ødegård J, Baranski M, Gjerde B, Gjedrem T (2011) Methodology for genetic evaluation of disease resistance in aquaculture species: challenges and future prospects. Aquac Res 42:103–114

    Article  Google Scholar 

  • O’Reilly PT, Kozfkay CC (2014) Use of microsatellite data and pedigree information in the genetic management of two long-term salmon conservation programs. Rev Fish Biol Fish 24:819–848

    Article  Google Scholar 

  • Olsen RL, Hasan MR (2012) A limited supply of fishmeal: Impact on future increases in global aquaculture production. Trends Food Sci Technol 27:120–128

    Article  CAS  Google Scholar 

  • Pandian T, Kirankumar S (2003) Recent advances in hormonal induction of sex-reversal in fish. J Appli Aquac 13:205–230

    Article  Google Scholar 

  • Pattarapanyawong N, Sukhavachana S, Senanan W, Srithong C, Joerakate W, Tunkijjanukij S, Poompuang S (2021) Genetic parameters for growth and fillet traits in Asian seabass (Lates calcarifer, Bloch 1790) population from Thailand. Aquaculture 539:736629

    Article  CAS  Google Scholar 

  • Rahman MA, Lee SG, Yusoff FM, Rafiquzzaman S (2018) Hybridization and its application in aquaculture. In: Han-Ping W, Francesc P, Song-Lin C, Shen ZG (eds) Sex control in aquaculture. Wiley, West Sussex, pp 163–178

    Chapter  Google Scholar 

  • Ravisankar T, Thirunavukkarasu A (2010) Market prospects of farmed Asian seabass Lates calcarifer (Bloch). Indian J Fish 57:49–53

    Google Scholar 

  • Roberts BH, Morrongiello JR, Morgan DL, King AJ, Saunders TM, Crook DA (2021) Faster juvenile growth promotes earlier sex change in a protandrous hermaphrodite (barramundi Lates calcarifer). Sci Rep 11:2276

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Robinson NA, Schipp G, Bosmans J, Jerry DR (2010) Modelling selective breeding in protandrous, batch-reared Asian sea bass (Lates calcarifer, Bloch) using walkback selection. Aquac Res 41:e643–e655

    Google Scholar 

  • Rothbard S, Biton I, Kulikovski Z (2010) Breeding, production and marketing of golden tench (Tinca tinca (L.)) in Gan Shmuel Fish Breeding Center. Israel. Rev Fish Biol Fish 20:367–373

    Article  Google Scholar 

  • Roy D (2021) Asian Sea Bass Market to grow at 5.5% CAGR through 2031, https://www.einnews.com/pr_news/560333316/asian-sea-bass-market-to-grow-at-5-5-cagr-through-2031

  • Safner R, Treer T, Aničić I, Kolak A (2001) Dressing percentage of four Croatian common carp (Cyprinus Carpio L.) populations. Croat J Fish 59:131–141

    Google Scholar 

  • Sampath-Kumar R, Byers R, Munro A, Lam T (1995) Profile of cortisol during the ontogeny of the Asian seabass, Lates calcarifer. Aquaculture 132:349–359

    Article  CAS  Google Scholar 

  • Senapin S, Dong HT, Meemetta W, Gangnonngiw W, Sangsuriya P, Vanichviriyakit R, Sonthi M, Nuangsaeng B (2019) Mortality from scale drop disease in farmed Lates calcarifer in Southeast Asia. J Fish Dis 42:119–127

    Article  PubMed  Google Scholar 

  • Shen Y, Ma K, Yue GH (2021) Status, challenges and trends of aquaculture in Singapore. Aquaculture 533:736210

    Article  Google Scholar 

  • Sivaloganathan B, Walford J, Ip Y, Lam T (1998) Free amino acids and energy metabolism in eggs and larvae of seabass, Lates calcarifer. Mar. Biol. 131:695–702

    Article  CAS  Google Scholar 

  • Stankus A (2021) State of world aquaculture 2020 and regional reviews: FAO webinar series. FAO Aquac Newsl 63:17–18

    Google Scholar 

  • Stark AH, Crawford MA, Reifen R (2008) Update on alpha-linolenic acid. Nutr Rev 66:326–332

    Article  PubMed  Google Scholar 

  • Sun F, Tu RJ, Xia JH, Liu XJ, Yue GH (2018) The FTO gene is associated with growth and omega-3/-6 ratio in Asian seabass. Mar Biotechnol 20:603–610

    Article  CAS  Google Scholar 

  • Sun F, Wen YF, Wang L, Yue GH (2020) An indel in the Suv39h1 gene is associated with resistance to iridovirus in the Asian seabass. Aquaculture 529:735611

    Article  CAS  Google Scholar 

  • Tay YX, Yu Y, Yang Z, Wang L, Sun F, Yue GH (2023) Characterization of pIgR and its association with resistance to iridovirus in Asian seabass. Aquaculture 562:738783

    Article  CAS  Google Scholar 

  • Tenugu S, Senthilkumaran B (2022) Sexual plasticity in bony fishes: analyzing morphological to molecular changes of sex reversal. Aquac Fish 7:525–539

    Article  Google Scholar 

  • Tocher DR (2015) Omega-3 long-chain polyunsaturated fatty acids and aquaculture in perspective. Aquaculture 449:94–107

    Article  CAS  Google Scholar 

  • Tur J, Bibiloni M, Sureda A, Pons A (2012) Dietary sources of omega 3 fatty acids: public health risks and benefits. Br J Nutr 107:S23–S52

    Article  Google Scholar 

  • Vij S, Kuhl H, Kuznetsova IS, Komissarov A, Yurchenko AA, Van Heusden P, Singh S, Thevasagayam NM, Prakki SRS, Purushothaman K, Saju JM, Jiang J, Mbandi SK, Jonas M, Tong AHY, Mwangi S, Lau D, Ngoh SY, Liew WC, Shen XY, Hon LS, Drake JP, Boitano M, Hall R, Chin CS, Lachumanan R, Korlach J, Trifonov V, Kabilov M, Tupikin A, Green D, Moxon S, Garvin T, Sedlazeck FJ, Vurture GW, Gopalapillai G, Katneni VK, Noble TH, Scaria V, Sivasubbu S, Jerry DR, O’Brien SJ, Schatz MC, Dalmay T, Turner SW, Lok S, Christoffels A, Orban L (2016) Chromosomal-level assembly of the Asian seabass genome using long sequence reads and multi-layered scaffolding. PLoS Genet 12:e1005954

    Article  PubMed  PubMed Central  Google Scholar 

  • Walford J, Lam T (1993) Development of digestive tract and proteolytic enzyme activity in seabass (Lates calcarifer) larvae and juveniles. Aquaculture 109:187–205

    Article  CAS  Google Scholar 

  • Walford J, Lim T, Lam T (1991) Replacing live foods with microencapsulated diets in the rearing of seabass (Lates calcarifer) larvae: do the larvae ingest and digest protein-membrane microcapsules? Aquaculture 92:225–235

    Article  Google Scholar 

  • Wang CM, Bai ZY, He XP, Lin G, Xia JH, Sun F, Lo LC, Feng F, Zhu ZY, Yue GH (2011) A high-resolution linkage map for comparative genome analysis and QTL fine mapping in Asian seabass Lates calcarifer. BMC Genom 12:174

    Article  CAS  Google Scholar 

  • Wang L, Bai B, Huang S, Liu P, Wan ZY, Ye B, Wu J, Yue GH (2017) QTL mapping for resistance to iridovirus in Asian seabass using genotyping-by-sequencing. Mar Biotechnol 19:517–527

    Article  Google Scholar 

  • Wang L, Bai B, Liu P, Huang SQ, Wan ZY, Chua E, Ye BQ, Yue GH (2017) Construction of high-resolution recombination maps in Asian seabass. BMC Genom 18:63

    Article  Google Scholar 

  • Wang W, Barratt BJ, Clayton DG, Todd JA (2005) Genome-wide association studies: theoretical and practical concerns. Nat Rev Genet 6:109–118

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Chua E, Sun F, Wan ZY, Ye BQ, Pang HY, Wen YF, Yue GH (2019) Mapping and validating QTL for fatty acid compositions and growth traits in Asian Seabass. Mar Biotechnol 21:643–654

    Article  Google Scholar 

  • Wang L, Liu P, Huang S, Ye B, Chua E, Wan ZY, Yue GH (2017) Genome-wide association study identifies loci associated with resistance to viral nervous necrosis disease in Asian seabass. Mar Biotechnol 19:255–265

    Article  CAS  Google Scholar 

  • Wang CM, Lo LC, Feng F, Gong P, Li J, Zhu ZY, Lin G, Yue GH (2008) Construction of a BAC library and mapping BAC clones to the linkage map of Barramundi Lates calcarifer. BMC Genom 9:139

    Article  Google Scholar 

  • Wang CM, Lo LC, Feng F, Zhu ZY, Yue GH (2008) Identification and verification of QTL associated with growth traits in two genetic backgrounds of Barramundi (Lates calcarifer). Anim Genet 39:34–39

    Article  PubMed  Google Scholar 

  • Wang CM, Lo LC, Zhu ZY, Lin G, Feng F, Li J, Yang WT, Tan J, Chou R, Lim HS, Orban L, Yue GH (2008) Estimating reproductive success of brooders and heritability of growth traits in Asian sea bass (Lates calcarifer) using microsatellites. Aquac Res 39:1612–1619

    Google Scholar 

  • Wang CM, Lo LC, Zhu ZY, Yue GH (2006) A genome scan for quantitative trait loci affecting growth-related traits in an F1 family of Asian seabass (Lates calcarifer). BMC Genom 7:274

    Article  Google Scholar 

  • Wang L, Sun F, Wan ZY, Yang Z, Tay YX, Lee M, Ye B, Wen Y, Meng Z, Fan B (2022) Transposon-induced epigenetic silencing in the X chromosome as a novel form of dmrt1 expression regulation during sex determination in the fighting fish. BMC Biol 20:4075

    Article  Google Scholar 

  • Wang L, Sun F, Wen YF, Yue GH (2021) Effects of Ocean Acidification on Transcriptomes in Asian Seabass Juveniles. Mar Biotechnol 23:445–455

    Article  CAS  Google Scholar 

  • Wang L, Wan ZY, Lim HS, Yue GH (2016) Genetic variability, local selection and demographic history: genomic evidence of evolving towards allopatric speciation in Asian seabass. Mol Ecol 25:3605–3621

    Article  PubMed  Google Scholar 

  • Wang CM, Zhu ZY, Lo LC, Feng F, Lin G, Yang WT, Li J, Yue GH (2007) A microsatellite linkage map of Barramundi, Lates calcarifer. Genetics 175:907–915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wong J, Tay YX, Yue GH (2023a) Developing a predictive growth models for Asian seabass using four generations of data. Aquac Fish in press

  • Wong J, Sun F, Tay YX, Wang L, Yang ZT, Wen YF, Pang HY, Lee M, Yeo ST, Liang B, Chen K, Jiang JH, GH Y (2023b) Changes in genetic diversity of Asian seabass in a 20-year breeding program. Aquaculture 575:739738

  • Xia JH, Yue GH (2010) Identification and analysis of immune-related transcriptome in Asian seabass Lates calcarifer. BMC Genom 11:356

    Article  Google Scholar 

  • Xia JH, Feng F, Lin G, Wang CM, Yue GH (2010) A first generation BAC-based physical map of the Asian seabass (Lates calcarifer). PLoS One 5:e11974

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  • Xia JH, He XP, Bai ZY, Lin G, Yue GH (2011) Analysis of the Asian seabass transcriptome based on expressed sequence tags. DNA Res 18:513–522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xia JH, Lin G, He X, Liu P, Liu F, Sun F, Tu R, Yue GH (2013a) Whole genome scanning and association mapping identified a significant association between growth and a SNP in the IFABP-a gene of the Asian seabass. BMC Genom 14:295

    Article  CAS  Google Scholar 

  • Xia JH, Liu P, Liu F, Lin G, Sun F, Tu RJ, Yue GH (2013b) Analysis of stress-responsive transcriptome in the intestine of Asian seabass (Lates calcarifer) using RNA-Seq. DNA Res 20:449–460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xia JH, Lin G, He X, Yunping B, Liu P, Liu F, Sun F, Tu R, Yue GH (2014) Mapping quantitative trait loci for omega-3 fatty acids in Asian seabass. Mar Biotechnol 16:1–9

    Article  CAS  Google Scholar 

  • Xu YX, Zhu ZY, Lo LC, Wang CM, Lin G, Feng F, Yue GH (2006) Characterization of two parvalbumin genes and their association with growth traits in Asian seabass (Lates calcarifer). Anim Genet 37:266–268

    Article  CAS  PubMed  Google Scholar 

  • Yang ZT, Wong SM, Yue GH (2020) Characterization of GAB3 and its association with NNV resistance in the Asian seabass. Fish Shellfish Immunol 104:18–24

    Article  CAS  PubMed  Google Scholar 

  • Yang Z, Yue GH, Wong S-M (2022) VNN disease and status of breeding for resistance to NNV in aquaculture. Aquac Fish 7:147–157

    Article  Google Scholar 

  • Ye B, Wan Z, Wang L, Pang H, Wen Y, Liu H, Liang B, Lim HS, Jiang J, Yue G (2017) Heritability of growth traits in the Asian seabass (Lates calcarifer). Aquac Fish 2:112–118

    Article  Google Scholar 

  • Yu YP, Yang ZT, Sun F, Wang L, Lee M, Yue GH (2021) Two SNPs in SNX2 are associated with SGIV resistance in Asian seabass. Aquaculture 540:736695

    Article  CAS  Google Scholar 

  • Yue GH (2014) Recent advances of genome mapping and marker-assisted selection in aquaculture. Fish Fish 15:376–396

    Article  Google Scholar 

  • Yue GH, Xia JH (2014) Practical considerations of molecular parentage analysis in fish. J World Aquacult Soc 45:89–103

    Article  Google Scholar 

  • Yue G, Wang L (2017) Current status of genome sequencing and its applications in aquaculture. Aquaculture 468:337–347

    Article  CAS  Google Scholar 

  • Yue K, Shen Y (2022) An overview of disruptive technologies for aquaculture. Aquac Fish 7:111–120

    Article  Google Scholar 

  • Yue G, Li Y, Orban L (2001) Characterization of microsatellites in the IGF-2 and GH genes of Asian seabass (Lates calcarifer). Mar Biotechnol 3:1–3

    Article  CAS  Google Scholar 

  • Yue GH, Zhu ZY, Lo LC, Wang CM, Lin G, Fenf F, Pang HY, Li J, Gong P, Liu HM, Tan J, Chou R, Lim H, Orban L (2009) Genetic variation and population structure of Asian seabass (Lates calcarifer) in the Asia-Pacific region. Aquaculture 293:22–28

    Article  CAS  Google Scholar 

  • Yue GH, Xia JH, Liu P, Liu F, Sun F, Lin G (2012) Tracing Asian seabass individuals to single fish farms using microsatellites. PLoS One 7:e52721

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Yue GH, Orban L, Lim HS (2017) Current status of the asian seabass breeding program. Aquaculture 472:85–85

    Google Scholar 

  • Yue GH, Wang L, Yang Z, Sun F, Tay YX, Wong J, Yeo S (2023) Genomic resources and their applications in aquaculture of Asian seabass (Lates calcarifer). Rev Aquac 15(2):853–871

    Article  Google Scholar 

  • Zhu ZY, Lin G, Lo LC, Xu YX, Feng F, Chou R, Yue GH (2006) Genetic analyses of Asian seabass stocks using novel polymorphic microsatellites. Aquaculture 256:167–173

    Article  CAS  Google Scholar 

  • Zhu ZY, Wang CM, Lo LC, Lin G, Feng F, Tan J, Chou R, Lim HS, Orban L, Yue GH (2010) A standard panel of microsatellites for Asian seabass (Lates calcarifer). Anim Genet 41:208–212

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Singapore Ministry of National Development (MND), the Singapore Food Agency (SFA), the National Research Foundation (NRF) Singapore, Allegro Aqua Pte Ltd, and the Innovation Supporting Fund (ISF) of Temasek Life Sciences Laboratory for funding this study since 2004. We are indebted to our former lab members for their assistance in measuring and collecting samples over the past 20 years. We are grateful to the staff members of the Marine Aquaculture Hatchery for supporting this project since 2003.

Author information

Authors and Affiliations

Authors

Contributions

YGH and LHS: Conceptualization, Methodology, Software. YGH, WL. SF, YZT, WJ, WYF, PHY, LM, YST, LB. CK, LHS, and JJH: Data curation, Writing- Original draft preparation. WL. SF, YZT, WJ, WYF, PHY, LM, YST, LB. CK, and JJH: Visualization, Investigation. YGH and JJH: Supervision. WL. SF, YZT, WJ, WYF, PHY, LM, YST, LB. CK, and JJH: Validation. YGH, WL. WJ, LM, YST, LB. CK, LHS, and JJH: Reviewing and editing.

Corresponding author

Correspondence to G. H. Yue.

Ethics declarations

Conflict of interest

We declare that we do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent to publication

We give our consent for the publication of identifiable details, which can include figure(s) and/Statements and Declarations.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 15 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yue, G.H., Wang, L., Sun, F. et al. Improving growth, omega-3 contents, and disease resistance of Asian seabass: status of a 20-year family-based breeding program. Rev Fish Biol Fisheries 34, 91–110 (2024). https://doi.org/10.1007/s11160-023-09810-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11160-023-09810-6

Keywords

Navigation