Skip to main content
Log in

Pigmentation enhancement techniques during ornamental fish production

  • Reviews
  • Published:
Reviews in Fish Biology and Fisheries Aims and scope Submit manuscript

Abstract

The ornamental fish industry has continued to flourish since eighteenth century with increased fascination by enthusiasts in the striking body colours and patterns displayed in the fishes, a beneficial outcome of rigorous selective programmes. The expression of these pigmented colours is the result of the differentiation and orientation of specialised chromatophores located within the dermal layer. The different types of chromatophores found in many ornamental fish species, are the basis of the unique colour hues and patterns. This review discusses the current approaches for enhancing the body pigmentation and pattern of ornamental fishes. Two factors are considered to be the main drivers of body colour regulation: feed additives (pigments) and rearing environment setup, i.e. tank colour and light. Potential candidate pigment genes to manipulate the ornamental fish body pigmentation and pattern have been elucidated through mapping of putative regulatory pathways, buoyed by the rapid development of next generation sequencing technologies. The effects of feed additives, tank background colour and light on various ornamental fish species, and regulatory pathways of involved genes offer valuable insights for enhanced variety production prior to genetic engineering and are herein discussed. It is hoped that the systematic analysis of the current knowledge in this review would be a boon for the ornamental fish community to step up efforts to boost the ornamental fish breeding industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article.

References

  • Ahi EP, Sefc KM (2017a) Anterior-posterior gene expression differences in three Lake Malawi cichlid fishes with variation in body stripe orientation. PeerJ 5:e4080

    Article  PubMed  PubMed Central  Google Scholar 

  • Ahi EP, Sefc KM (2017b) A gene expression study of dorso-ventrally restricted pigment pattern in adult fins of Neolamprologus meeli, an African cichlid species. PeerJ 5:e2843

    Article  PubMed  PubMed Central  Google Scholar 

  • Ahi EP, Lecaudey LA, Ziegelbecker A, Steiner O, Glabonjat R, Goessler W, Hois V, Wagner C, Lass A, Sefc KM (2020) Comparative transcriptomics reveals candidate carotenoid color genes in an East African cichlid fish. BMC Genom 21(1):1–15. https://doi.org/10.1186/s12864-020-6473-8

    Article  CAS  Google Scholar 

  • Albertson RC, Powder KE, Hu Y, Coyle KP, Roberts RB, Parsons KJ (2014) Genetic basis of continuous variation in the levels and modular inheritance of pigmentation in cichlid fishes. Mol Ecol 23(21):5135–5150. https://doi.org/10.1111/mec.12900

    Article  PubMed  PubMed Central  Google Scholar 

  • Ashour EA, Farsi RM, Alaidaroos BA, Abdel-Moneim A-ME, El-Saadony MT, Osman AO, Abou Sayed-Ahmed ET, Albaqami NM, Shafi ME, Taha AE (2021) Impacts of dietary supplementation of pyocyanin powder on growth performance, carcase traits, blood chemistry, meat quality and gut microbial activity of broilers. Ital J Anim Sci 20(1):1357–1372

    Article  CAS  Google Scholar 

  • Asra Nor Izaty A, Norazmi-Lokman NH (2019) Effects of tank colour on body colour intensity and growth of Yellow Gourami Trichopodus trichopterus. Universiti Malaysia Terengganu J Undergrad Res 1(4):9–18. https://doi.org/10.46754/umtjur.v1i4.87

  • Baite J, Verma AK, Prakash C, Chandrakant MH, Saharan N (2010) Effect of light intensity on growth, survival and skin colour of goldfish (Carassius auratus Linnaeus). J Aquacult Trop 25(1–4):47–59

    Google Scholar 

  • Barman HK, Rasal KD, Chakrapani V, Ninawe AS, Vengayil DT, Asrafuzzaman S, Sundaray JK, Jayasankar P (2017) Gene editing tools: state-of-the-art and the road ahead for the model and non-model fishes. Transgenic Res 26:577–589

    Article  CAS  PubMed  Google Scholar 

  • Baron M, Davies S, Alexander L, Snellgrove D, Sloman KA (2008) The effect of dietary pigments on the coloration and behaviour of flame-red dwarf gourami, Colisa Lalia. Anim Behav 75(3):1041–1051. https://doi.org/10.1016/j.anbehav.2007.08.014

    Article  Google Scholar 

  • Baxter LL, Watkins-Chow DE, Pavan WJ, Loftus SK (2019) A curated gene list for expanding the horizons of pigmentation biology. Pigment Cell Melanoma Res 32(3):348–358. https://doi.org/10.1111/pcmr.12743

    Article  PubMed  Google Scholar 

  • Boeuf G, Le Bail PY (1999) Does light have an influence on fish growth? Aquac 177(1):129–152. https://doi.org/10.1016/S0044-8486(99)00074-5

    Article  Google Scholar 

  • Braasch I, Schartl M, Volff J-N (2007) Evolution of pigment synthesis pathways by gene and genome duplication in fish. BMC Evol Biol 7(1):74. https://doi.org/10.1186/1471-2148-7-74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cal L, Suarez-Bregua P, Cerdá-Reverter JM, Braasch I, Rotllant J (2017) Fish pigmentation and the melanocortin system. Comp Biochem Physiol A Mol Integr Physiol 211:26–33. https://doi.org/10.1016/j.cbpa.2017.06.001

    Article  CAS  PubMed  Google Scholar 

  • Cal L, Suarez-Bregua P, Comesaña P, Owen J, Braasch I, Kelsh R, Cerdá-Reverter JM, Rotllant J (2019) Countershading in zebrafish results from an Asip1 controlled dorsoventral gradient of pigment cell differentiation. Sci Rep 9(1):3449. https://doi.org/10.1038/s41598-019-40251-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Capelli B, Bagchi D, Cysewski GR (2013) Synthetic astaxanthin is significantly inferior to algal-based astaxanthin as an antioxidant and may not be suitable as a human nutraceutical supplement. Nutrafoods 12(4):145–152. https://doi.org/10.1007/s13749-013-0051-5

    Article  CAS  Google Scholar 

  • Cerdá-Reverter JM, Haitina T, Schiöth HB, Peter RE (2005) Gene structure of the goldfish agouti-signaling protein: a putative role in the dorsal-ventral pigment pattern of fish. Endocrinology 146(3):1597–1610. https://doi.org/10.1210/en.2004-1346%JEndocrinology

    Article  PubMed  Google Scholar 

  • Cerdá-Reverter JM, Agulleiro MJ, Guillot R, Sánchez E, Ceinos R, Rotllant J (2011) Fish melanocortin system. Eu J Pharmacol 660(1):53–60

    Article  Google Scholar 

  • Chen JY, Zeng C, Jerry DR, Cobcroft JM (2020b) Recent advances of marine ornamental fish larviculture: broodstock reproduction, live prey and feeding regimes, and comparison between demersal and pelagic spawners. Rev Aquac 12(3):1518–1541. https://doi.org/10.1111/raq.12394

    Article  CAS  Google Scholar 

  • Chen D, Zhang Q, Tang W, Huang Z, Wang G, Wang Y, Shi J, Xu H, Lin L, Li Z, Chi W, Huang L, Xia J, Zhang X, Guo L, Wang Y, Ma P, Tang J, Zhou G, Liu M, Liu F, Hua X, Wang B, Shen Q, Jiang Q, Lin J, Chen X, Wang H, Dou M, Liu L, Pan H, Qi Y, Wu B, Fang J, Zhou Y, Cen W, He W, Zhang Q, Xue T, Lin G, Zhang W, Liu Z, Qu L, Wang A, Ye Q, Chen J, Zhang Y, Ming R, Van Montagu M, Tang H, Van de Peer Y, Chen Y, Zhang J (2020a) The evolutionary origin and domestication history of goldfish (Carassius auratus). Proc Natl Acad Sci USA 117(47): 29775–29785. https://doi.org/10.1073/pnas.2005545117

  • Cho YS, Lee SY, Kim DS, Nam YK (2013) Characterization of stable fluorescent transgenic marine medaka (Oryzias dancena) lines carrying red fluorescent protein gene driven by myosin light chain 2 promoter. Transgenic Res 22(4):849–859. https://doi.org/10.1007/s11248-012-9675-2

    Article  CAS  PubMed  Google Scholar 

  • Cho YS, Lee SY, Kim DS, Nam YK (2014) A cyan fluorescent protein gene (cfp)-transgenic marine medaka Oryzias dancena with potential ornamental applications. Fish Aquat Sci 17(4):479–486. https://doi.org/10.5657/FAS.2014.0479

    Article  Google Scholar 

  • Costa DC, Mattioli CC, Silva WS, Takata R, Leme FOP, Oliveira AL, Luz RK (2016) The effect of environmental colour on the growth, metabolism, physiology and skin pigmentation of the carnivorous freshwater catfish Lophiosilurus alexandri. J Fish Biol 90(3):922–935. https://doi.org/10.1111/jfb.13208

    Article  CAS  PubMed  Google Scholar 

  • Das A, Biswas SJJoA, Biology M (2016) Carotenoids and pigmentation in ornamental fish. J Aquac Mar Biol 4(4):00093. https://doi.org/10.15406/jamb.2016.04.00093

  • DeBritto S, Gajbar TD, Satapute P, Sundaram L, Lakshmikantha RY, Jogaiah S, Ito S-i (2020) Isolation and characterization of nutrient dependent pyocyanin from Pseudomonas aeruginosa and its dye and agrochemical properties. Sci Rep 10(1):1542. https://doi.org/10.1038/s41598-020-58335-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dharmaraj S, Dhevendaran K (2011) Application of microbial carotenoids as a source of colouration and growth of ornamental fish Xiphophorus helleri. World J Fish Mar Sci 3(2):137–144

    CAS  Google Scholar 

  • Díaz-Jiménez L, Hernández-Vergara MP, Pérez-Rostro CI, Olvera-Novoa MÁ (2021) The effect of two carotenoid sources, background colour and light spectrum on the body pigmentation of the clownfish Amphiprion ocellaris. Aquac Res 52(7):3052–3061. https://doi.org/10.1111/are.15149

    Article  CAS  Google Scholar 

  • Diler I, Dilek K (2002) Significance of pigmentation and use in aquaculture. Turkish J Fish Aquat Sci 2:97–99

    Google Scholar 

  • Ebeneezar S, Prabu DL, Chandrasekar S, Tejpal CS, Madhu K, Sayooj P, Vijayagopal P (2020) Evaluation of dietary oleoresins on the enhancement of skin coloration and growth in the marine ornamental clown fish, Amphiprion ocellaris (Cuvier, 1830). Aquac 529:735728. https://doi.org/10.1016/j.aquaculture.2020.735728

  • Eriksen NT (2016) Research trends in the dominating microalgal pigments, -carotene, astaxanthin, and phycocyanin used in feed, in foods, and in health applications. J Nutr Food Sci 6(3):507. https://doi.org/10.4172/2155-9600.1000507

    Article  CAS  Google Scholar 

  • Eslamloo K, Akhavan SR, Eslamifar A, Henry MA (2015) Effects of background colour on growth performance, skin pigmentation, physiological condition and innate immune responses of goldfish. Carassius Auratus Aquac Res 46(1):202–215. https://doi.org/10.1111/are.12177

    Article  CAS  Google Scholar 

  • Ezhil J, Narayanan M (2013) Pseudomonas aeruginosa as a potential probiont and pigment enhancer in the ornamental cichlid. Pseudotropheus Lombardoi Proc Zool Soc 66(2):154–158. https://doi.org/10.1007/s12595-012-0050-3

    Article  Google Scholar 

  • Fadeev A, Krauss J, Singh AP, Nüsslein-Volhard C (2016) Zebrafish leucocyte tyrosine kinase controls iridophore establishment, proliferation and survival. Pigment Cell Melanoma Res 29(3):284–296. https://doi.org/10.1111/pcmr.12454

    Article  CAS  PubMed  Google Scholar 

  • Fang W, Huang J, Li S, Lu J (2022) Identification of pigment genes (melanin, carotenoid and pteridine) associated with skin color variant in red tilapia using transcriptome analysis. Aquac 547:737429. https://doi.org/10.1016/j.aquaculture.2021.737429

  • Fletcher GL, Davies PL (1991). Transgenic fish for aquaculture. genetic engineering: principles and methods. (ed) J. K. Setlow. Boston, MA, Springer US: 331–370

  • Fobert EK, Burke da Silva K, Swearer SE (2019) Artificial light at night causes reproductive failure in clownfish. Biol Lett 15(7):20190272. https://doi.org/10.1098/rsbl.2019.0272

    Article  PubMed  PubMed Central  Google Scholar 

  • Galetović A, Seura F, Gallardo V, Graves R, Cortés J, Valdivia C, Núñez J, Tapia C, Neira I, Sanzana S, Gómez-Silva B (2020) Use of phycobiliproteins from atacama cyanobacteria as food colorants in a dairy beverage prototype. Foods 9(2):244. https://doi.org/10.3390/foods9020244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gan W, Chung-Davidson Y-W, Chen Z, Song S, Cui W, He W, Zhang Q, Li W, Li M, Ren J (2021) Global tissue transcriptomic analysis to improve genome annotation and unravel skin pigmentation in goldfish. Sci Rep 11(1):1815. https://doi.org/10.1038/s41598-020-80168-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gastineau R, Turcotte F, Pouvreau JB, Morançais M, Fleurence J, Windarto E, Prasetiya FS, Arsad S, Jaouen P, Babin M, Coiffard L, Couteau C, Bardeau JF, Jacquette B, Leignel V, Hardivillier Y, Marcotte I, Bourgougnon N, Tremblay R, Deschênes JS, Badawy H, Pasetto P, Davidovich N, Hansen G, Dittmer J, Mouget JL (2014) Marennine, promising blue pigments from a widespread Haslea diatom species complex. Mar Drugs 12(6):3161–3189. https://doi.org/10.3390/md12063161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gjedrem T, Baranski M (2009) Selective breeding in aquaculture: an introduction. reviews: methods and technologies in fish biology and fisheries. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2773-3

  • Gjedrem T, Baranski M (2010) Selective breeding in aquaculture: an introduction (Vol. 10). Springer Science & Business Media

  • Gonçalves T, Vasconcelos U (2021) Colour me blue: the history and the biotechnological potential of pyocyanin. Molecules 26(4):927

    Article  PubMed  PubMed Central  Google Scholar 

  • Gouveia L, Rema P (2005) Effect of microalgal biomass concentration and temperature on ornamental goldfish (Carassius auratus) skin pigmentation. Aquac Nutr 11(1):19–23. https://doi.org/10.1111/j.1365-2095.2004.00319.x

  • Gouveia L, Rema P, Pereira O, Empis J (2003) Colouring ornamental fish (Cyprinus carpio and Carassius auratus) with microalgal biomass. Aquac Nutr 9(2):123–129. https://doi.org/10.1046/j.1365-2095.2003.00233.x

  • Gross JB, Powers AK, Davis EM, Kaplan SA (2016) A pleiotropic interaction between vision loss and hypermelanism in Astyanax mexicanus cave x surface hybrids. BMC Evol Biol 16(1):145. https://doi.org/10.1186/s12862-016-0716-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gui J, Zhou L (2010) Genetic basis and breeding application of clonal diversity and dual reproduction modes in polyploid Carassius auratus gibelio. Sci China Life Sci 53:409–415. https://doi.org/10.1007/s11427-010-0092-6

    Article  PubMed  Google Scholar 

  • Gur D, Palmer BA, Leshem B, Oron D, Fratzl P, Weiner S, Addadi L (2015) The mechanism of color change in the neon tetra fish: a light-induced tunable photonic crystal array. Angew Chem Int Ed 54(42): 12426–12430. https://doi.org/10.1002/anie.201502268

  • Hendrick LA, Carter GA, Hilbrands EH, Heubel BP, Schilling TF, Le Pabic P (2019) Bar, stripe and spot development in sand-dwelling cichlids from Lake Malawi. EvoDevo 10(1):18. https://doi.org/10.1186/s13227-019-0132-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Henning F, Lee HJ, Franchini P, Meyer A (2014) Genetic mapping of horizontal stripes in Lake Victoria cichlid fishes: benefits and pitfalls of using RAD markers for dense linkage mapping. Mol Ecol 23(21):5224–5240

    Article  CAS  PubMed  Google Scholar 

  • Henríquez V, Escobar C, Galarza J, Gimpel J (2016) Carotenoids in Microalgae. In: Stange C (ed) Carotenoids in nature: biosynthesis, regulation and function. Springer International Publishing, Cham, pp 219–237

    Chapter  Google Scholar 

  • Higdon CW, Mitra RD, Johnson SL (2013) Gene expression analysis of zebrafish melanocytes, iridophores, and retinal pigmented epithelium reveals indicators of biological function and developmental origin. PLoS ONE 8(7):e67801. https://doi.org/10.1371/journal.pone.0067801

  • Howard RD, Rohrer K, Liu Y, Muir WM (2015) Mate competition and evolutionary outcomes in genetically modified zebrafish (Danio rerio). Evolution 69(5):1143–1157. https://doi.org/10.1111/evo.12662

    Article  PubMed  Google Scholar 

  • Hu IC (2019) Chapter 14—production of potential coproducts from microalgae. In: Pandey A, Chang JS, Soccol CR, Lee DJ, Chisti Y (eds) Biofuels from Algae, 2nd edn. Elsevier, pp 345–358

    Chapter  Google Scholar 

  • Huang D, Lewis VM, Foster TN, Toomey MB, Corbo JC, Parichy DM (2021) Development and genetics of red coloration in the zebrafish relative Danio albolineatus. eLife 10:e70253. https://doi.org/10.7554/eLife.70253

  • Hulata G (1995) A review of genetic improvement of the common carp (Cyprinus carpio L.) and other cyprinids by crossbreeding, hybridization and selection. Aquac 129(1–4):143–155. https://doi.org/10.1016/0044-8486(94)00244-I

    Article  Google Scholar 

  • Inoue S, Kondo S, Parichy DM, Watanabe M (2014) Tetraspanin 3c requirement for pigment cell interactions and boundary formation in zebrafish adult pigment stripes. Pigment Cell Melanoma Res 27(2):190–200. https://doi.org/10.1111/pcmr.12192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Irion U, Nüsslein-Volhard C (2019) The identification of genes involved in the evolution of color patterns in fish. Curr Opin Genet Dev 57:31–38. https://doi.org/10.1016/j.gde.2019.07.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iwashita M, Watanabe M, Ishii M, Chen T, Johnson SL, Kurachi Y, Okada N, Kondo S (2006) Pigment pattern in jaguar/obelix zebrafish is caused by a kir7.1 mutation: implications for the regulation of melanosome movement. PLoS Genet 2(11):e197. https://doi.org/10.1371/journal.pgen.0020197

  • Jackman RL, Smith JL (1996). Anthocyanins and betalains. Natural Food Colorants. G. A. F. Hendry and J. D. Houghton. Boston, MA, Springer US: 244–309

  • Jiang J, Nuez-Ortin W, Angell A, Zeng C, de Nys R, Vucko MJ (2019) Enhancing the colouration of the marine ornamental fish Pseudochromis fridmani using natural and synthetic sources of astaxanthin. Algal Res 42:101596. https://doi.org/10.1016/j.algal.2019.101596

  • Kaur R, Shah TK (2017) Role of feed additives in pigmentation of ornamental fishes. Int J Fish Aquat Sci 5(2):684–686

    Google Scholar 

  • Kelley JL, Phillips B, Cummins GH, Shand J (2012) Changes in the visual environment affect colour signal brightness and shoaling behaviour in a freshwater fish. Anim Behav 83(3):783–791. https://doi.org/10.1016/j.anbehav.2011.12.028

    Article  Google Scholar 

  • Kelley JL, Rodgers GM, Morrell LJ (2016) Conflict between background matching and social signalling in a colour-changing freshwater fish. R Soc Open Sci 3(6):160040. https://doi.org/10.1098/rsos.160040

  • Khoo HE, Azlan A, Tang ST, Lim SM (2017) Anthocyanidins and anthocyanins: colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food Nutr Res 61(1):1361779. https://doi.org/10.1080/16546628.2017.1361779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kimura T, Takehana Y, Naruse K (2017) pnp4a is the causal gene of the medaka iridophore mutant guanineless. G3: Genes Genomes Genet 7(4):1357–1363. https://doi.org/10.1534/g3.117.040675

  • Kimura T (2021) Pigments in teleosts and their biosynthesis. In: Hashimoto H, Goda M, Futahashi R, Kelsh R and Akiyama T (eds) Pigments, pigment cells and pigment patterns. Springer Singapore, Singapore, 127–148

  • King TA (2019) Wild caught ornamental fish: a perspective from the UK ornamental aquatic industry on the sustainability of aquatic organisms and livelihoods. J Fish Biol 94(6):925–936. https://doi.org/10.1111/jfb.13900

    Article  PubMed  Google Scholar 

  • Kirkwood JK (2012) Selective breeding: making the welfare consequences clear. Vet Rec 170(21):535–537. https://doi.org/10.1136/vr.e3344

    Article  PubMed  Google Scholar 

  • Klann M, Mercader M, Carlu L, Hayashi K, Reimer JD, Laudet V (2021) Variation on a theme: pigmentation variants and mutants of anemonefish. EvoDevo 12(1):8. https://doi.org/10.1186/s13227-021-00178-x

    Article  PubMed  PubMed Central  Google Scholar 

  • Komiyama T, Kobayashi H, Tateno Y, Inoko H, Gojobori T, Ikeo K (2009) An evolutionary origin and selection process of goldfish. Gene 430(1–2):5–11. https://doi.org/10.1016/j.gene.2008.10.019

    Article  CAS  PubMed  Google Scholar 

  • Kop A, Durmaz Y (2008) The effect of synthetic and natural pigments on the colour of the cichlids (Cichlasoma severum sp., Heckel 1840). Aquac Int 16(2):117–122. https://doi.org/10.1007/s10499-007-9130-1

  • Krauss J, Astrinides P, Frohnhöfer HG, Walderich B, Nüsslein-Volhard C (2013) transparent, a gene affecting stripe formation in Zebrafish, encodes the mitochondrial protein Mpv17 that is required for iridophore survival. Biol Open 2(7):703–710. https://doi.org/10.1242/bio.20135132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kurnia A, Nur I, Muskita WH, Hamzah M, Iba W, Patadjai RS, Balubi AM, Kalidupa N (2019) Improving skin coloration of koi carp (Cyprinus carpio) fed with red dragon fruit peel meal. Aquac Aquar Conserv Legis 12(4):1045–1053

    Google Scholar 

  • Kwon, YM, Vranken N, Hoge C, Lichak MR, Norovich AL, Francis KX, Camacho-Garcia J, Bista I, Wood J, Mccarthy S, Chow W, Tan HH, Howe K, Bandara S, Lintig JV, Rüber L, Durbin R, Svardal H, Bendesky A (2022). Genomic consequences of domestication of the Siamese fighting fish.. Sci Adv 8(10):eabm4950. https://doi.org/10.1126/sciadv.abm4950

  • Lee CR, Lee SM (2008) Effect of dietary supplementation of pigment sources on pigmentation of the round tailed paradise fish Macropodus chinensis and the pale chub Zacco platypus. J Aquac 21(4):213–217

    CAS  Google Scholar 

  • Leggatt RA, Devlin RH (2020) Fluorescent protein transgenesis has varied effects on behaviour and cold tolerance in a tropical fish (Gymnocorymbus ternetzi): implications for risk assessment. Fish Physiol and Biochem 46(1):395–403. https://doi.org/10.1007/s10695-019-00725-3

    Article  CAS  Google Scholar 

  • Li CY, Steighner JR, Sweatt G, Thiele TR, Juntti SA (2021) Manipulation of the tyrosinase gene permits improved CRISPR/Cas editing and neural imaging in cichlid fish. Sci Rep 11(1):15138. https://doi.org/10.1038/s41598-021-94577-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li BJ, Zhu ZX, Gu XH, Lin HR, Xia JH (2019) QTL Mapping for Red Blotches in Malaysia Red Tilapia (Oreochromis spp.). Mar Biotechnol 21(3):384–395. https://doi.org/10.1007/s10126-019-09888-9

  • Li SF, Wang CH (2001) Genetic diversity and selective breeding of red common carps in China. Naga - The ICLARM Quarterly 24(3&4):56-63

    Google Scholar 

  • Li X, Wang X, Duan C, Yi S, Gao Z, Xiao C, Agathos SN, Wang G, Li J (2020) Biotechnological production of astaxanthin from the microalga Haematococcus pluvialis. Biotechnol Adv 43:107602. https://doi.org/10.1016/j.biotechadv.2020.107602

  • Lili W, Rizal A, Herman RG, Ramadhan RM (2021) Effect of Spirulina flour on changes of color intensity in angelfish (Pterophyllum scalare) strain three color. Asian J Fish Aquat Res 11(2):52–58

    Article  Google Scholar 

  • Lin B, Cui Y, Yan M, Wang Y, Gao Z, Meng C, Qin S (2019) Construction of astaxanthin metabolic pathway in the green microalga Dunaliella viridis. Algal Res 44:101697. https://doi.org/10.1016/j.algal.2019.101697

  • Lind CE, Ponzoni RW, Nguyen NH, Khaw HL (2012) Selective breeding in fish and conservation of genetic resources for aquaculture. Reprod Domest Anim 47(s4):255–263. https://doi.org/10.1111/j.1439-0531.2012.02084.x

    Article  PubMed  Google Scholar 

  • Liu Q, Qi Y, Liang Q, Song J, Liu J, Li W, Shu Y, Tao M, Zhang C, Qin Q, Wang J, Liu S (2019) Targeted disruption of tyrosinase causes melanin reduction in Carassius auratus cuvieri and its hybrid progeny. Sci China Life Sci 62(9):1194–1202. https://doi.org/10.1007/s11427-018-9404-7

    Article  CAS  PubMed  Google Scholar 

  • Liu F, Sun F, Kuang GQ, Wang L, Yue GH (2022) Identification of Pmel17 for golden skin color using linkage mapping in Mozambique tilapia. Aquac 548(2):737703. https://doi.org/10.1016/j.aquaculture.2021.737703

  • Lu Q, Li H, Zou Y, Liu H, Yang L (2021) Astaxanthin as a microalgal metabolite for aquaculture: A review on the synthetic mechanisms, production techniques, and practical application. Algal Res 54:102178. https://doi.org/10.1016/j.algal.2020.102178

  • Lu B, Wang C, Liang G, Xu M, Kocher TD, Sun L, Wang D (2022) Generation of ornamental Nile tilapia with distinct gray and black body color pattern by csf1ra mutation. Aquac Rep 23:101077. https://doi.org/10.1016/j.aqrep.2022.101077

  • Luo M, Lu G, Yin H, Wang L, Atuganile M, Dong Z (2021) Fish pigmentation and coloration: molecular mechanisms and aquaculture perspectives. Rev Aquac 13(4):2395–2412

    Article  Google Scholar 

  • Magalhães ALB, Brito MFG, Silva LGM (2022) The fluorescent introduction has begun in the southern hemisphere: presence and life-history strategies of the transgenic zebrafish Danio rerio (Cypriniformes: Danionidae) in Brazil. Stud Neotrop Fauna and Environ 1–13. https://doi.org/10.1080/01650521.2021.2024054

  • Maiti MK, Bora D, Nandeesha T, Sahoo S, Adarsh B, Kumar S, Studies A (2017) Effect of dietary natural carotenoid sources on colour enhancement of Koi carp, Cyprinus carpio L. Int J Fish Aquat Stud 5(4):340–345

    Google Scholar 

  • Margareta A, Nikhlani A (2021) The effectiveness of supplementation of spirulina sp and astaxanthin within feed to color quality of comet fish (Carassius auratus). Jurnal Ilmu Kelautan 7(1):1–6

    Google Scholar 

  • Marshall NJ, Cortesi F, de Busserolles F, Siebeck UE, Cheney KL (2019) Colours and colour vision in reef fishes: past, present and future research directions. J Fish Biol 95(1):5–38. https://doi.org/10.1111/jfb.13849

    Article  PubMed  Google Scholar 

  • Marzorati S, Schievano A, Idà A, Verotta L (2020) Carotenoids, chlorophylls and phycocyanin from Spirulina: supercritical CO2 and water extraction methods for added value products cascade. Green Chem 22(1):187–196. https://doi.org/10.1039/C9GC03292D

    Article  CAS  Google Scholar 

  • McCluskey BM, Liang Y, Lewis VM, Patterson LB, Parichy DM (2021a) Pigment pattern morphospace of Danio fishes: evolutionary diversification and mutational effects. Biol Open. https://doi.org/10.1242/bio.058814

  • McCluskey BM, Uji S, Mancusi JL, Postlethwait JH, Parichy DM (2021b) A complex genetic architecture in zebrafish relatives Danio quagga and D. kyathit underlies development of stripes and spots. PLoS Genet 17(4):e1009364. https://doi.org/10.1371/journal.pgen.1009364

  • McLean E (2021) Fish tank color: an overview. Aquac 530:735750. https://doi.org/10.1016/j.aquaculture.2020.735750

  • Mente E, Karalazos V, Karapanagiotidis IT, Pita C (2011) Nutrition in organic aquaculture: an inquiry and a discourse. Aquac Nutr 17(4):e798–e817. https://doi.org/10.1111/j.1365-2095.2010.00846.x

    Article  Google Scholar 

  • Míguez DG, Muñuzuri AP (2006) On the orientation of stripes in fish skin patterning. Biophys Chem 124(2):161–167. https://doi.org/10.1016/j.bpc.2006.06.014

    Article  CAS  PubMed  Google Scholar 

  • Mo ES, Cheng Q, Reshetnyak AV, Schlessinger J, Nicoli S (2017) Alk and Ltk ligands are essential for iridophore development in zebrafish mediated by the receptor tyrosine kinase Ltk. Proc Natl Acad Sci USA 114(45):12027–12032. https://doi.org/10.1073/pnas.1710254114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mohammadiazarm H, Maniat M, Ghorbanijezeh K, Ghotbeddin N (2021) Effects of spirulina powder (Spirulina platensis) as a dietary additive on Oscar fish, Astronotus ocellatus: Assessing growth performance, body composition, digestive enzyme activity, immune-biochemical parameters, blood indices and total pigmentation. Aquac Nutr 27(1):252–260. https://doi.org/10.1111/anu.13182

  • Monica J, Neelakantan V, Seenappa D (2019) Effect of dietary incorporation of anthocyanin pigments on the coloration and growth of orange sword tail fish (Xiphophorus helleri). Int J Fish Aquat Stud 7(5):144–149

    Google Scholar 

  • Mueller KP, Neuhauss SCF (2014) Sunscreen for fish: co-option of uv light protection for camouflage. PLoS ONE 9(1):e87372. https://doi.org/10.1371/journal.pone.0087372

  • Nawang SUSM, Ching FF, Senoo S (2019) Comparison on growth performance, body coloration changes and stress response of juvenile river catfish, Pangasius hypophthalmus reared in different tank background colour. Aquac Res 50(9):2591–2599. https://doi.org/10.1111/are.14215

    Article  CAS  Google Scholar 

  • Ng TT, Lau CC, Tan MP, Wong LL, Sung YY, Tengku-Muhammad TS, Van de Peer Y, Sui LY, Danish-Daniel M (2023) Cutaneous transcriptomic profiling and candidate pigment genes in the wild discus (Symphysodon spp.). NZ J Zool. https://doi.org/10.1080/03014223.2023.2180763

  • Ng M (2004) Discus catalogue. AquaCare Worldwide

  • Ng C (2016) The ornamental freshwater fish trade in Malaysia. UTAR Agric Sci J 2(4)

  • O’Quin CT, Drilea AC, Conte MA, Kocher TD (2013) Mapping of pigmentation QTL on an anchored genome assembly of the cichlid fish. Metriaclima Zebra BMC Genom 14(1):287. https://doi.org/10.1186/1471-2164-14-287

    Article  CAS  Google Scholar 

  • O’Gorman M, Thakur S, Imrie G, Moran RL, Choy S, Sifuentes-Romero I, Bilandžija H, Renner KJ, Duboué E, Rohner N, McGaugh SE, Keene AC, Kowalko JE (2021) Pleiotropic function of the oca2 gene underlies the evolution of sleep loss and albinism in cavefish. Curr Biol 31(16):3694-3701.e3694. https://doi.org/10.1016/j.cub.2021.06.077

    Article  CAS  PubMed  Google Scholar 

  • Oshima N, Nakata E, Kamagata MS (1998) Light-induced pigment aggregation in xanthophores of the medaka. Oryzias Latipes Pigment Cell Res 11(6):362–367. https://doi.org/10.1111/j.1600-0749.1998.tb00495.x

    Article  CAS  PubMed  Google Scholar 

  • Owen JP, Yates CA and Kelsh RN (2021) Differential growth is a critical determinant of zebrafish pigment pattern formation. bioRxiv 2021.06.11.448058. https://doi.org/10.1101/2021.06.11.448058

  • Padhi N, Jena SK, Ail SKS, Ferosekhan S, Sahoo SN, Udit UK, Bairwa MK, Swain SK (2022) Does tank background colour influence the growth, survival, and carotenoid content in fishes? An illustration in filament barb, Dawkinsia filamentosa (Valenciennes, 1844). Aquac 560:738536. https://doi.org/10.1016/j.aquaculture.2022.738536

  • Pagels F, Guedes AC, Amaro HM, Kijjoa A, Vasconcelos V (2019) Phycobiliproteins from cyanobacteria: chemistry and biotechnological applications. Biotechnol Adv 37(3):422–443. https://doi.org/10.1016/j.biotechadv.2019.02.010

    Article  CAS  PubMed  Google Scholar 

  • Pan CH, Chien YH (2009) Effects of dietary supplementation of alga Haematococcus pluvialis (Flotow), synthetic astaxanthin and β-carotene on survival, growth, and pigment distribution of red devil, Cichlasoma citrinellum (Günther). Aquac Res 40(8):871–879. https://doi.org/10.1111/j.1365-2109.2008.02153.x

    Article  CAS  Google Scholar 

  • Pan X, Zhan H, Gong Z (2008) Ornamental expression of red fluorescent protein in transgenic founders of white skirt tetra (Gymnocorymbus ternetzi). Mar Biotechnol (NY) 10(5):497–501. https://doi.org/10.1007/s10126-008-9094-9

    Article  CAS  PubMed  Google Scholar 

  • Patel AK, Tambat VS, Chen CW, Chauhan AS, Kumar P, Vadrale AP, Huang CY, Dong CD, Singhania RR (2022) Recent advancements in astaxanthin production from microalgae: A review. Bioresour Technol 364:128030. https://doi.org/10.1016/j.biortech.2022.128030

  • Patterson LB, Parichy DM (2013) Interactions with iridophores and the tissue environment required for patterning melanophores and xanthophores during zebrafish adult pigment stripe formation. PLoS Genet 9(5):e1003561. https://doi.org/10.1371/journal.pgen.1003561

  • Pérez-Escalante V, Aguirre-Guzmán G, Vanegas-Espinoza PE, Villar-Martínez AAD (2012) Effect of Anthocyanin’s Extract from flour of Roselle calyx (Hibiscus sabdariffa) on growth and pigmentation of Goldfish (Carassius auratus). Wetchasan Sattawaphaet 42(1):107–111

    Google Scholar 

  • Pérez-Legaspi IA, Valadez-Rocha V, Ortega-Clemente LA, Jiménez-García MI (2020) Microalgal pigment induction and transfer in aquaculture. Rev Aquac 12(3):1323–1343. https://doi.org/10.1111/raq.12384

    Article  Google Scholar 

  • Petratou K, Subkhankulova T, Lister JA, Rocco A, Schwetlick H, Kelsh RN (2018) A systems biology approach uncovers the core gene regulatory network governing iridophore fate choice from the neural crest. PLoS Genet 14(10):e1007402. https://doi.org/10.1371/journal.pgen.1007402

  • Pinto KS, Pires TH, Stefanelli-Silva G, Barros BS, Borghezan EA, Zuanon J (2020) Does soil color affect fish evolution? Differences in color change rate between lineages of the sailfin tetra. Neotrop Ichthyol 18(2):e190093. https://doi.org/10.1590/1982-0224-2019-0093

  • Pouil S, Tlusty MF, Rhyne AL, Metian M (2020) Aquaculture of marine ornamental fish: overview of the production trends and the role of academia in research progress. Rev Aquac 12(2):1217–1230. https://doi.org/10.1111/raq.12381

    Article  Google Scholar 

  • Prabhath GPWA, Shukla SP, Srivastava PP, Sawant PB, Chouksey MK, Nuwansi KKT (2019) Effects of dietary supplemented Spirulina (Arthrospira) platensis extracted pigments on the colouration of ornamental fish Koi Carp (Cyprinus Carpio Var. Koi). J Exp Zool 22(2):1287–1297

  • Prasetiya FS, Sunarto S, Bachtiar E, Agung MUK, Nathanael B, Pambudi AC, Lestari AD, Astuty S, Mouget J-L (2020) Effect of the blue pigment produced by the tropical diatom Haslea nusantara on marine organisms from different trophic levels and its bioactivity. Aquac Rep 17:100389. https://doi.org/10.1016/j.aqrep.2020.100389

  • Priyaja P, Jayesh P, Philip R, Bright Singh IS (2016) Pyocyanin induced in vitro oxidative damage and its toxicity level in human, fish and insect cell lines for its selective biological applications. Cytotechnology 68(1):143–155. https://doi.org/10.1007/s10616-014-9765-5

    Article  CAS  PubMed  Google Scholar 

  • Rahimi P, Abedimanesh S, Mesbah-Namin SA, Ostadrahimi A (2019) Betalains, the nature-inspired pigments, in health and diseases. Crit Rev Food Sci Nutr 59(18):2949–2978. https://doi.org/10.1080/10408398.2018.1479830

    Article  CAS  PubMed  Google Scholar 

  • Rajeswari MV (1833) Rajasree SRR and Balasubramanian T (2017) Effect of light levels on growth, survival and skin colour enhancement of marine angelfish, Apolemichthys xanthurus (Bennett. Turkish J Fish Aquat Sci 17(6):1083–1087

    Google Scholar 

  • Rekha R, Nimsi KA, Manjusha K, Sirajudheen TK (2022) Marine yeast Rhodotorula paludigena VA 242 a pigment enhancing feed additive for the ornamental fish Koi Carp. Aquac Fish. https://doi.org/10.1016/j.aaf.2022.05.008

    Article  Google Scholar 

  • Rodgers GM, Kelley JL, Morrell AJ (2010) Colour change and assortment in the western rainbowfish. Anim Behav 79(5):1025–1030. https://doi.org/10.1016/j.anbehav.2010.01.017

    Article  Google Scholar 

  • Rodgers GM, Gladman NW, Corless HF, Morrell LJ (2013) Costs of colour change in fish: food intake and behavioural decisions. J Exp Biol 216(14):2760–2767. https://doi.org/10.1242/jeb.080879

    Article  PubMed  Google Scholar 

  • Rout J, Sharma B, Swain S, Mishra S (2013) Algae in nutrition and colouration of ornamental fish: a review. Renew Sust Energ 14(2):578–597

    Google Scholar 

  • Salis P, Lorin T, Lewis V, Rey C, Marcionetti A, Escande ML, Roux N, Besseau L, Salamin N, Sémon M, Parichy D, Volff JN, Laudet V (2019) Developmental and comparative transcriptomic identification of iridophore contribution to white barring in clownfish. Pigment Cell Melanoma Res 32(3):391–402. https://doi.org/10.1111/pcmr.12766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sánchez-Vázquez FJ, López-Olmeda JF, Vera LM, Migaud H, López-Patiño MA, Míguez JM (2019) Environmental cycles, melatonin, and circadian control of stress response in fish. Front Endocrinol 10:279. https://doi.org/10.3389/fendo.2019.00279

    Article  Google Scholar 

  • Sathyaruban S, Uluwaduge DI, Yohi S, Kuganathan S (2021) Potential natural carotenoid sources for the colouration of ornamental fish: a review. Aquac Int 29(4):1507–1528. https://doi.org/10.1007/s10499-021-00689-3

    Article  Google Scholar 

  • Shiraki T, Kojima D, Fukada Y (2010) Light-induced body color change in developing zebrafish. Photochem Photobiol Sci 9(11):1498–1504. https://doi.org/10.1039/c0pp00199f

    Article  CAS  PubMed  Google Scholar 

  • Silva SC, Ferreira ICFR, Dias MM, Barreiro MF (2020) Microalgae-derived pigments: a 10-year bibliometric review and industry and market trend analysis. Mol. https://doi.org/10.3390/molecules25153406

  • Singh MK, Borgohain P, Kaur K, Gogoi S (2021) Emergence of plants in fish pigmentation. Agric Res 10(4):535–542. https://doi.org/10.1007/s40003-021-00551-1

    Article  Google Scholar 

  • Snekser JL, McRobert SP, Murphy CE, Clotfelter ED (2006) Aggregation behavior in wildtype and transgenic zebrafish. Ethology 112(2):181–187. https://doi.org/10.1111/j.1439-0310.2006.01139.x

    Article  Google Scholar 

  • Song X, Wang L, Li X, Chen Z, Liang G, Leng X (2017) Dietary astaxanthin improved the body pigmentation and antioxidant function, but not the growth of discus fish (Symphysodon spp.). Aquac Res 48(4):1359–1367. https://doi.org/10.1111/are.13200

  • Stevens CH, Croft DP, Paull GC, Tyler CR (2017) Stress and welfare in ornamental fishes: What can be learned from aquaculture? J Fish Biol 91(2):409–428. https://doi.org/10.1111/jfb.13377

    Article  CAS  PubMed  Google Scholar 

  • Sun X, Chang Y, Ye Y, Ma Z, Liang Y, Li T, Jiang N, Xing W, Luo L (2012) The effect of dietary pigments on the coloration of Japanese ornamental carp (koi, Cyprinus carpio L.). Aquac 342–343:62–68. https://doi.org/10.1016/j.aquaculture.2012.02.019

    Article  CAS  Google Scholar 

  • Tan HT, Yusoff FM, Khaw YS, Ahmad SA, Shaharuddin NA (2021) Uncovering research trends of phycobiliproteins using bibliometric approach. Plants. https://doi.org/10.3390/plants10112358

  • Tanaka Y, Sasaki N, Ohmiya A (2008) Biosynthesis of plant pigments: anthocyanins, betalains and carotenoids. Plant J 54(4):733–749. https://doi.org/10.1111/j.1365-313X.2008.03447.x

    Article  CAS  PubMed  Google Scholar 

  • Teruhisa K, Toshiro M, Makoto S, Chichester CO (1972) The biosynthesis of astaxanthin.X. the carotenoids in the red carp, Cyprinus carpio linne, and the interconversion of β-[15,15′-3H2]carotene into their body astaxanthin. Int J Biochem Cell Biol 3(17):569–572. https://doi.org/10.1016/0020-711X(72)90013-4

  • Thongprajukaew K, Kovitvadhi S, Kovitvadhi U, Rungruangsak-Torrissen K (1910) Pigment deposition and in vitro screening of natural pigment sources for enhancing pigmentation in male Siamese fighting fish (Betta splendens Regan. Aquac Res 45(4):709–719. https://doi.org/10.1111/are.12009

    Article  CAS  Google Scholar 

  • Tripathy PS, Devi NC, Parhi J, Priyadarshi H, Patel AB, Pandey PK, Mandal SC (2019) Molecular mechanisms of natural carotenoid-based pigmentation of queen loach, Botia dario (Hamilton, 1822) under captive condition. Sci Rep 9(1):12585. https://doi.org/10.1038/s41598-019-48982-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Unver AG, Hamzaçebi S (2020) Effect of natural pigment sources on colouration of red zebra cichlid (Maylandia estherae Konings, 1995). Aquac Res 51(10):4372–4380. https://doi.org/10.1111/are.14868

  • Uthayasiva M, Haq MB, Kumar TA (2014) Significance of light intensity to enhance the colour of marine ornamental fish Amphiprion clarkii (Bennett, 1830) in captivity. Int J Fauna Biol Stud 1(4):14–18

    Google Scholar 

  • Vandeputte M (2003) Selective breeding of quantitative traits in the common carp (Cyprinus carpio): a review. Aquat Living Resour 16(5):399–407. https://doi.org/10.1016/S0990-7440(03)00056-1

    Article  Google Scholar 

  • Vanegas-Espinoza PE, Pérez-Escalante V, Aguirre-Guzman G, Hoyos-Leyva JD, Del Villar-Martínez AA (2019) Microencapsulation of anthocyanins from roselle (Hibiscus sabdariffa) and its application on a pigment supplied diet to fantail goldfish (Carassius auratus). Aquac Int 27(6):1801–1811. https://doi.org/10.1007/s10499-019-00430-1

    Article  CAS  Google Scholar 

  • Venil CK, Zakaria ZA, Ahmad WA (2013) Bacterial pigments and their applications. Process Biochem 48(7):1065–1079. https://doi.org/10.1016/j.procbio.2013.06.006

    Article  CAS  Google Scholar 

  • Wagde MS, Sharma SK, Sharma BK, Shivani AP, Keer NR (2018) Effect of natural β-carotene from-carrot (Daucus carota) and Spinach (Spinacia oleracea) on colouration of an ornamental fish-swordtail (Xiphophorus hellerii). J Entomol Zool Stud 6(6):699–705

    Google Scholar 

  • Walster C (2008) Chapter 16—the welfare of ornamental fish. In: Branson EJ (ed) Fish welfare, Blackwell Publishing Ltd, United Kingdom, pp 271–289

  • Wan H, He J, Ju B, Yan T, Lam TJ, Gong Z (2002) Generation of two-color transgenic zebrafish using the green and red fluorescent protein reporter genes gfp and rfp. Mar Biotechnol 4(2):146–154. https://doi.org/10.1007/s10126-001-0085-3

    Article  CAS  Google Scholar 

  • Wu HW, Zhong L (1964) Progress and achievement on artificial proliferation of grass carp, black carp, silver carp and big head carp in China. Chin Sci Bull 9:900-907

    Google Scholar 

  • Xiong YY, Ai CH, Zhu ZX, Xia JH (2022) Genetic architecture of wintering black spot trait in red tilapia as revealed by a genome-wide association study. Aquac 558:738358. https://doi.org/10.1016/j.aquaculture.2022.738358

  • Yanar M, Erdoğan E, Kumlu M (2019) Thermal tolerance of thirteen popular ornamental fish Species. Aquac 501:382–386. https://doi.org/10.1016/j.aquaculture.2018.11.041

    Article  Google Scholar 

  • Yang Z, Yu Y, Tay YX, Yue GH (2021) Genome editing and its applications in genetic improvement in aquaculture. Rev Aquac 14(1):178–191. https://doi.org/10.1111/raq.12591

    Article  Google Scholar 

  • Yasir I, Qin JG (2009) Effect of light intensity on color performance of false clownfish, Amphiprion ocellaris cuvier. J World Aquac Soc 40(3):337–350. https://doi.org/10.1111/j.1749-7345.2009.00254.x

    Article  Google Scholar 

  • Yu L, Chen H, Hu X, Chen X, Liu Z, Wang J, Wang C (2021) SLC24A5 plays fundamental roles in regulating melanophore development in Cyprinidae fish. Reprod Breed 1(3):167–173. https://doi.org/10.1016/j.repbre.2021.11.001

    Article  Google Scholar 

  • Yue GH, Wang L, Yang Z, Shen Y, Meng Z, Alfiko Y (2022) The ornamental fighting fish is the next model organism for genetic studies. Rev Aquac 14(4):1966–1977. https://doi.org/10.1111/raq.12681

    Article  Google Scholar 

  • Yue GH (2019) The ornamental fish industry in Singapore. J Fish China 43(1):116–127. https://doi.org/10.11964/jfc.20180911442

  • Yusoff FM, Banerjee S, Nagao N, Imaizumi Y, Shariff M, Toda T (2020) Use of microalgae pigments in aquaculture. In: Jacob-Lopes E, Queiroz MI and Zepka LQ (eds) Pigments from microalgae handbook. Springer International Publishing, Cham, pp 471–513

  • Zeng Z, Liu X, Seebah S, Gong Z (2005) Faithful expression of living color reporter genes in transgenic medaka under two tissue-specific zebrafish promoters. Dev Dyn 234(2):387–392. https://doi.org/10.1002/dvdy.20491

  • Zerulla TC, Stoddard PK (2021) The biology of polymorphic melanic side-spotting patterns in Poeciliid fishes. Front Ecol Environ 8:608289. https://doi.org/10.3389/fevo.2020.608289

  • Zhang Y, Liu J, Peng L, Ren L, Zhang H, Zou L, Liu W, Xiao Y (2017) Comparative transcriptome analysis of molecular mechanism underlying gray-to-red body color formation in red crucian carp (Carassius auratus, red var.). Fish Physiol Biochem 43(5):1387–1398. https://doi.org/10.1007/s10695-017-0379-7

  • Zhang W, Wang H, Brandt DYC, Hu B, Sheng J, Wang M, Luo H, Li Y, Guo S, Sheng B, Zeng Q, Peng K, Zhao D, Jian S, Wu D, Wang J, Zhao G, Ren J, Shi W, van Esch JHM, Klingunga S, Nielsen R, Hong Y (2022) The genetic architecture of phenotypic diversity in the Betta fish (Betta splendens). Sci Adv 8(38):eabm4955. https://doi.org/10.1126/sciadv.abm4955

  • Zhou L, Gui J-F (2018) Applications of genetic breeding biotechnologies in chinese aquaculture. Aquac China 463–496

  • Zhu Z, He L, Chen S (1985) Novel gene transfer into the fertilized eggs of gold fish (Carassius auratus L. 1758). J Appl Ichthyol 1(1): 31–34. https://doi.org/10.1111/j.1439-0426.1985.tb00408.x

  • Zutshi B, Singh A (2021) Artificial photoperiod influence on survivability, pigmentation and hematological parameters in live-bearer ornamental fish. Poecilia Sphenops Indian J Ecol 48(2):508–512

    Google Scholar 

Download references

Acknowledgements

We would like to thank Aquacity Tropical Fish Sdn. Bhd for sharing commercial data collection.

Funding

 We thank Universiti Malaysia Terengganu for providing funding support for this project (UMT/SRG/2019/55195).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: CCL, MDD; Funding acquisition: YSY, MDD; Literature search and data analysis: CCL, MPT; Original draft preparation: CCL; Review and editing: SAMN, LLW, YVP, PS.

Corresponding author

Correspondence to Cher Chien Lau.

Ethics declarations

Conflict of interest

All authors certify that they have no conflicts of interest to declare for this project.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lau, C.C., Mohd Nor, S.A., Tan, M.P. et al. Pigmentation enhancement techniques during ornamental fish production. Rev Fish Biol Fisheries 33, 1027–1048 (2023). https://doi.org/10.1007/s11160-023-09777-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11160-023-09777-4

Keywords

Navigation