Skip to main content
Log in

Genetic basis and breeding application of clonal diversity and dual reproduction modes in polyploid Carassius auratus gibelio

  • Special Topic
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

A unisexual species is generally associated with polyploidy, and reproduced by a unisexual reproduction mode, such as gynogenesis, hybridogenesis or parthenogenesis. Compared with other unisexual and polyploid species, gibel carp (Carassius auratus gibelio) has a higher ploidy level of hexaploid. It has undergone several successive rounds of genome polyploidy, and experienced an additional, more recent genome duplication event. More significantly, the dual reproduction modes, including gynogenesis and sexual reproduction, have been demonstrated to coexist in the polyploid gibel carp. This article reviews the genetic basis concerning polyploidy origin, clonal diversity and dual reproduction modes, and outlines the progress in new variety breeding and gene identification involved in the reproduction and early development. The data suggests that gibel carp are under an evolutionary trajectory of diploidization. As a novel evolutionary developmental (Evo-Devo) biology model, this work highlights future perspectives about the functional divergence of duplicated genes and the sexual origin of vertebrate animals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Vrijenhoek R C. Unisexual fish: Model systems for studying ecology and evolution. Annu Rev Ecol Syst, 1994, 25:71–96 10.1146/annurev.es.25.110194.000443

    Article  Google Scholar 

  2. Schlupp I. The evolutionary ecology of gynogenesis. Annu Rev Ecol Evol Syst, 2005, 36:399–417 10.1146/annurev.ecolsys.36.102003.152629

    Article  Google Scholar 

  3. Gui J F. Evolutionary genetics of unisexual vertebrates. Nat J (Shanghai), 1989, 12:116–121

    Google Scholar 

  4. Hubbs C L, Hubbs L C. Apparent parthenogenesis in nature, in a form of fish of hybrid origin. Science, 1932, 76:628–630 10.1126/science.76.1983.628, 17730035, 1:STN:280:DC%2BC3cvmsFOqsQ%3D%3D

    Article  PubMed  Google Scholar 

  5. Vrijenhoek R C, Dawley R M, Cole C J, et al. A list of known unisexual vertebrates. Evolution and ecology of unisexual vertebrates. In: Dawley R M, Bogard J P, eds. Albany: New York State Museum, 1989. 19–23

    Google Scholar 

  6. Crow J F, Kimura M. Evolution in sexual and asexual populations. Am Nat, 1965, 99:439–450 10.1086/282389

    Article  Google Scholar 

  7. Schartl M, Nanda I, Schlupp I, et al. Incorporation of subgenomic amounts of DNA as compensation for mutational load in a gynogenetic fish. Nature, 1995, 373:68–71 10.1038/373068a0

    Article  Google Scholar 

  8. Kearney M. Hybridization, glaciation and geographical parthenogenesis. Trends Ecol Evol, 2005, 20:495–502 10.1016/j.tree.2005.06.005, 16701426

    Article  PubMed  Google Scholar 

  9. Lampert K P, Schartl M. The origin and evolution of a unisexual hybrid: Poecilia formosa. Philos Trans R Soc Lond B Biol Sci, 2008, 363:2901–2909 10.1098/rstb.2008.0040, 18508756, 1:STN:280:DC%2BD1crosVyntQ%3D%3D

    Article  PubMed  PubMed Central  Google Scholar 

  10. Muller H J. The relation of recombination to mutational advance. Mutat Res, 1964, 1:2–9

    Article  Google Scholar 

  11. Crow J F. The odds of losing at genetic roulette. Nature, 1999. 397:293–294 10.1038/16789, 9950420, 1:CAS:528:DyaK1MXhtVOmsLw%3D

    Article  PubMed  Google Scholar 

  12. Spolsky C M, Phillips C A, Uzzell T. Antiquity of clonal salamander lineages revealed by mitochondrial DNA. Nature, 1992, 356:706–708 10.1038/356706a0, 1570013, 1:CAS:528:DyaK38XisFamtbw%3D

    Article  PubMed  Google Scholar 

  13. Hedges S B, Bogard J P, Maxson L R. Ancestry of unisexual salamanders. Nature, 1992, 356:708–710 10.1038/356708a0, 1570014, 1:CAS:528:DyaK38XisFamtb0%3D

    Article  PubMed  Google Scholar 

  14. Bogart J P, Bi K, Fu J, et al. Unisexual salamanders (genus Ambystoma) present a new reproductive mode for eukaryotes. Genome, 2007, 50:119–136 10.1139/G06-152, 17546077, 1:CAS:528:DC%2BD2sXntlOgtbg%3D

    Article  PubMed  Google Scholar 

  15. Normark B B, Judson O P, Moran N A. Genomic signatures of ancient asexual lineages. Biol J Linn Soc, 2003, 79:69–84 10.1046/j.1095-8312.2003.00182.x

    Article  Google Scholar 

  16. Moritz C, Heideman A. The origin and evolution of parthenogenesis in Heteronotia binoei (Gekkonidae): Reciprocal origins and diverse mitochondrial DNA in western populations. Syst Biol, 1993, 42:293–306

    Article  Google Scholar 

  17. Kearney M, Blacket M J, Strasburg J L, et al. Waves of parthenogenesis in the desert: Evidence of the parallel loss of sex in a grasshopper and a gecko from Australia. Mol Ecol, 2006, 15:1743–1748 10.1111/j.1365-294X.2006.02898.x, 16689894, 1:CAS:528:DC%2BD28XmtlGrs7o%3D

    Article  PubMed  Google Scholar 

  18. Quattro J M, Avise J C, Vrijenhoek R C. An ancient clinal lineage in the fish genus Poeciliopsis (Atheriniformes: Poeciliidae). Proc Natl Acad Sci USA, 1992, 89:348–352 10.1073/pnas.89.1.348, 11607248, 1:STN:280:DC%2BD3MrmtFahtQ%3D%3D

    Article  PubMed  PubMed Central  Google Scholar 

  19. Schartl M, Wilde B, Schlupp I, et al. Evolutionary origin of a parthenoform, the Amazon molly Poecilia formosa, on the basis of a molecular genealogy. Evolution, 1995, 49:827–835 10.2307/2410406, 1:CAS:528:DyaK28XktlyisA%3D%3D

    Article  Google Scholar 

  20. Meyer M M, Salzburger W, Schartl M. Hybrid origin of a swordtail species (Teleostei: Xiphophorus clemenciae) driven by sexual selection. Mol Ecol, 2006, 15:721–730 10.1111/j.1365-294X.2006.02810.x, 16499697, 1:CAS:528:DC%2BD28XjsVGnsb8%3D

    Article  PubMed  Google Scholar 

  21. Angers B, Schlosser I J. The origin of Phoxinus eos-neogaeus unisexual hybrids. Mol Ecol, 2007, 16:4562–4571 10.1111/j.1365-294X.2007.03511.x, 17892466, 1:CAS:528:DC%2BD2sXhsVSitrrL

    Article  PubMed  Google Scholar 

  22. Maynard Smith J. Age and the unisexual lineage. Nature, 1992, 356:661–662 10.1038/356661a0

    Article  Google Scholar 

  23. Cherfas N B. Gynogenesis in fishes. In: Kirpichnikov V S, ed. Genetic Bases of Fish Selection. Berlin: Springer-Verlag, 1981. 255–273

    Google Scholar 

  24. Jiang Y, Liang S C, Chen B D, et al. Biological effect of heterologous sperm on gynogenetic offspring in Carassius auratus gibelio. Acta Hydrobiol Sin, 1983, 8:1–13

    Google Scholar 

  25. Zhou L, Wang Y, Gui J F. Genetic evidence for gonochoristic reproduction in gynogenetic silver crucian carp (Carassius auratus gibelio Bloch) as revealed by RAPD assays. J Mol Evol, 2000, 51:498–506 11080373, 1:CAS:528:DC%2BD3MXptFKm

    PubMed  Google Scholar 

  26. Ohno S, Muramoto J, Christian L. Diploid-tetraploid relationship among old-world members of fish family cyprinidae. Chromosoma, 1967, 23:1–9 10.1007/BF00293307

    Article  Google Scholar 

  27. Zhou L, Gui J F. Karyotypic diversity in polyploid gibel carp, Carassius auratus gibelio Bloch. Genetica, 2002, 115:223–232 10.1023/A:1020102409270, 12403177, 1:CAS:528:DC%2BD38XmvVKiu7s%3D

    Article  PubMed  Google Scholar 

  28. Yi M S, Li Y Q, Liu J D, et al. Molecular cytogenetic detection of paternal chromosome fragments in allogynogenetic gibel carp, Carassius auratus gibelio Bloch. Chromosome Res, 2003, 11: 665–671 10.1023/A:1025985625706, 14606628, 1:CAS:528:DC%2BD3sXns1Cmsrw%3D

    Article  PubMed  Google Scholar 

  29. Zhu H P, Ma D M, Gui J F. Triploid origin of the gibel carp as revealed by 5S rDNA localization and chromosome painting. Chromosome Res, 2006, 14:767–776 10.1007/s10577-006-1083-0, 17115331, 1:CAS:528:DC%2BD28Xht1Wqu7%2FM

    Article  PubMed  Google Scholar 

  30. Kobayashi H, Nakano K, Nakamura M. On the hybrids, 4n ginbuna (C. auratus langsdorfii) × kinbuna (C. auratus subsp.) and their chromosome. Bull Japan Soc Sci Fish, 1977, 43:31–37

    Article  Google Scholar 

  31. Gui J F, Liang S C, Zhu L F, et al. Discovery of multiple tetraploids in artificially propagated populations of allogynogenetic silver crucian carp and their breeding potentialities. Chinese Sci Bull, 1993, 38:327–331

    Google Scholar 

  32. Quattro J M, Avise J C, Vrijenhoek R C. Mode of origin and sources of genotypic diversity in triploid gynogenetic fish clones (Poeciliopsis: Poeciliidae). Genetics, 1992, 130:621–628 1348041, 1:STN:280:DyaK383gtFKntQ%3D%3D

    PubMed  PubMed Central  Google Scholar 

  33. Zhu H P, Gui J F. Identification of genome organization in the un usual allotetraploid form of Carassius auratus gibelio. Aquaculture, 2007, 265:109–117 10.1016/j.aquaculture.2006.10.026, 1:CAS:528:DC%2BD2sXjvFOns74%3D

    Article  Google Scholar 

  34. Hanfling H, Bolton P, Harley M, et al. A molecular approach to detect hybridisation between crusian carp (Carassius carassius) and non-indigenous carp species (Carassius spp. and Cyprinus carpio). Freshw Biol, 2005, 50:403–417 10.1111/j.1365-2427.2004.01330.x

    Article  Google Scholar 

  35. Toth B, Varkonyi E, Hidast A, et al. Genetic analysis of offspring from intra- and interspecific crosses of Carassius auratus gibelio by chromosome and RAPD analysis. J Fish Biol, 2005, 66:784–797 10.1111/j.0022-1112.2005.00644.x, 1:CAS:528:DC%2BD2MXjs1ensLk%3D

    Article  Google Scholar 

  36. Liousia V, Liasko R, Koutrakis E, et al. Variation in clones of the sperm-dependent parthenogenetic Carassius gibelio (Bloch) in Lake Pamvotis (north-west Greece). J Fish Biol, 2008, 72:310–314 10.1111/j.1095-8649.2007.01712.x

    Article  Google Scholar 

  37. Vetešní kL, Papoušek I, Halačka K, et al. Morphometric and genetic analysis of Carassius auratus complex from an artificial wetland in Morava River floodplain, Czech Republic. Fish Sci, 2007, 73: 817–822 10.1111/j.1444-2906.2007.01401.x, 1:CAS:528:DC%2BD2sXhtVaisbrM

    Article  Google Scholar 

  38. Kalous L, Šlechtová V Jr, Bohlen J, et al. First European record of Carassius langsdorfii from the Elbe Basin. J Fish Biol, 2007, 70:132–138 10.1111/j.1095-8649.2006.01290.x, 1:CAS:528:DC%2BD2sXksVOlu78%3D

    Article  Google Scholar 

  39. Sakai K, Iguchi K, Yamazaki Y, et al. Morphological and mtDNA sequence studies on three crucian carps (Carassius: Cyprinidae) including a new stock from the Ob River system, Kazakhstan. J Fish Biol, 2009, 74:1756–1773 10.1111/j.1095-8649.2009.02203.x, 1:CAS:528:DC%2BD1MXotVequ7Y%3D, 20735669

    Article  PubMed  Google Scholar 

  40. Zhu L F, Jiang Y G. A comparative study of the biological characters of gynogenetic clones of silver crucian carp (Carassius auratus gibelio). Acta Hydrobiol Sin, 1993, 17:112–120

    Google Scholar 

  41. Zhu L F, Jiang Y G. Intraspecific genetic markers of crucian carp (Carassius autratus gibelio) and their application to selective breeding. Acta Hydrobiol Sin, 1987, 11:105–111

    Google Scholar 

  42. Zhu L F. Genetic monitoring of different gynogenetic clones of crucian carp (Carassius auratus gibelio) by tissue-transplantation. Acta Hydrobiol Sin, 1990, 14:16–21

    Google Scholar 

  43. Yang L, Yang S T, Wei X H, et al. Genetic diversity among different clones of the gynogenetic silver crucian carp, Carassius auratus gibelio, revealed by transferrin and isozyme markers. Biochem Genet, 2001, 39:214–225 10.1023/A:1010297426390

    Article  Google Scholar 

  44. Zhou L, Wang Y, Gui J F. Analysis of genetic heterogeneity among five gynogenetic clones of silver crucian carp, Carassius auratus gibelio Bloch, based on detection of RAPD molecular markers. Cytogenet Cell Genet, 2000, 88:129–133 10.1159/000015506

    Google Scholar 

  45. Zhou L, Wang Y, Gui J F. Molecular analysis of silver crucian carp (Carassius auratus gibelio Bloch) clones by SCAR markers. Aquaculture, 2001, 201:219–228 10.1016/S0044-8486(01)00603-2, 1:CAS:528:DC%2BD3MXntVWkt7s%3D

    Article  Google Scholar 

  46. Guo W, Gui J F. Microsatellite marker isolation and cultured strain identification in Carassius auratus gibelio. Aquac Int, 2008, 16:497–510 10.1007/s10499-007-9161-7, 1:CAS:528:DC%2BD1cXht1yrur3I

    Article  Google Scholar 

  47. Yang L, Gui J F. Positive selection on multiple antique allelic lineages of transferrin in the polyploid Carassius auratus. Mol Biol Evol, 2004, 21:1264–1277 10.1093/molbev/msh121, 15014154, 1:CAS:528:DC%2BD2cXltlKls7w%3D

    Article  PubMed  Google Scholar 

  48. Yang L, Zhou L, Gui J F. Molecular basis of transferrin polymorphism in goldfish (Carassius auratus). Genetica, 2004, 121:303–313 10.1023/B:GENE.0000039855.55445.67, 15521429, 1:CAS:528:DC%2BD2cXntFCntbc%3D

    Article  PubMed  Google Scholar 

  49. Li F B, Gui J F. Clonal diversity and genealogical relationships of gibel carp in four hatcheries. Anim Genet, 2008, 39:28–33 10.1111/j.1365-2052.2007.01671.x, 18076744, 1:CAS:528:DC%2BD1cXjtFekur8%3D

    Article  PubMed  Google Scholar 

  50. Gui J F. Genetic basis and artificial control of sexuality and reproduction in fish. Beijing: Science Press, 2007.

    Google Scholar 

  51. Ryskov A P. Genetically unstable microsatellite-containing loci and genome diversity in clonally reproduced unisexual vertebrates. Int Rev Cell Mol Biol, 2008, 270:319–349 10.1016/S1937-6448(08)01407-X, 19081539, 1:CAS:528:DC%2BD1MXhvV2ltr4%3D

    Article  PubMed  Google Scholar 

  52. Xie J, Wen J J, Chen B, et al. Differential gene expression in fully-grown oocytes between gynogenetic and gonochoristic crucian carps. Gene, 2001, 271:109–116 10.1016/S0378-1119(01)00491-7, 11410372, 1:CAS:528:DC%2BD3MXkt1Kksrk%3D

    Article  PubMed  Google Scholar 

  53. Xie J, Wen J J, Yang Z A, et al. Cyclin A2 is differentially expressed during oocyte maturation between gynogenetic silver crucian carp and gonochoristic color crucian carp. J Exp Zool, 2003, 295:1–16 10.1002/jez.a.10209, 1:CAS:528:DC%2BD3sXhtVyns7w%3D

    Google Scholar 

  54. Dong C H, Yang S T, Yang Z A, et al. A C-type lectin associated and translocated with cortical granules during oocyte maturation and egg fertilization in fish. Dev Biol, 2004, 265:341–354 10.1016/j.ydbio.2003.08.028, 14732397, 1:CAS:528:DC%2BD2cXltF2ltQ%3D%3D

    Article  PubMed  Google Scholar 

  55. Chen B, Gui J F. Identification of a novel C1q family member in color crucian carp (Carassius auratus) ovary. Comp Biochem Phys B, 2004, 138:285–293 10.1016/j.cbpc.2004.04.014, 1:CAS:528:DC%2BD2cXlslyrsrw%3D

    Article  Google Scholar 

  56. Mei J, Chen B, Yue H M, et al. Identification of a C1q family member associated with cortical granules and follicular cell apoptosis in Carassius auratus gibelio. Mol Cell Endocrinol, 2008, 289:67–76 10.1016/j.mce.2008.02.016, 18407406, 1:CAS:528:DC%2BD1cXnsFKrtL8%3D

    Article  PubMed  Google Scholar 

  57. Richards J S, Liu Z, Shimada M. Immune-like mechanisms in ovulation. Trends Endocrinol Metab, 2008, 19:191–196 10.1016/j.tem.2008.03.001, 18407514, 1:CAS:528:DC%2BD1cXoslWmsL4%3D

    Article  PubMed  Google Scholar 

  58. Mei J, Zhang Q Y, Li Z, et al. C1q-like inhibits p53-mediated apoptosis and controls normal hematopoiesis during zebrafish embryogenesis. Dev Biol, 2008, 319:273–284 10.1016/j.ydbio.2008.04.022, 18514183, 1:CAS:528:DC%2BD1cXovVGitb4%3D

    Article  PubMed  Google Scholar 

  59. Wu N, Yue H M, Chen B, et al. Histone H2A has a novel variant in fish oocytes. Biol Reprod, 2009, 81:275–283 10.1095/biolreprod.108.074955, 19386992, 1:CAS:528:DC%2BD1MXptVaitb4%3D

    Article  PubMed  Google Scholar 

  60. Wu N, Li C J, Gui J F. Molecular characterization and functional commonality of nucleophosmin/nucleoplasmin in two cyprinid fish. Biochem Genet, 2009, 47:749–762 10.1007/s10528-009-9274-y, 1:CAS:528:DC%2BD1MXhsVamtLfP

    Article  PubMed  Google Scholar 

  61. Xu H Y, Gui J F, Hong Y H. Differential expression of vasa RNA and protein during spermatogenesis and oogenesis in the gibel carp (Carassius auratus gibelio), a bisexually and gynogenetically reproducing vertebrate. Dev Dyn, 2005, 233:872–882 10.1002/dvdy.20410, 15880437, 1:CAS:528:DC%2BD2MXmtFKgsL8%3D

    Article  PubMed  Google Scholar 

  62. Li M Y, Hong N, Xu H Y, et al. Medaka vasa is required for migration but not survival of primordial germ cells. Mech Dev, 2009, 126:366–381 10.1016/j.mod.2009.02.004, 19249358, 1:CAS:528:DC%2BD1MXlslWqu7o%3D

    Article  PubMed  Google Scholar 

  63. Peng J X, Xie J L, Zhou L, et al. Evolutionary conservation of Dazl genomic organization and its continuous and dynamic distribution throughout germline development in gynogenetic gibel carp. J Exp Zool Part B, 2009, 312B:855–871 10.1002/jez.b.21301, 1:CAS:528:DC%2BD1MXhsFGmsLbL

    Article  Google Scholar 

  64. Oh B, Hwang S Y, Solter D, et al. Spindlin, a major maternal transcript expressed in the mouse during the transition from oocyte to embryo. Development, 1997, 124:493–503 9053325, 1:CAS:528:DyaK2sXhvVWmsbk%3D

    PubMed  Google Scholar 

  65. Oh B, Hwang S, McLaughlin J, et al. Timely translation during the mouse oocyte-to-embryo transition. Development, 2000, 127: 3795–3803 10934024, 1:CAS:528:DC%2BD3cXmvFSmtLw%3D

    PubMed  Google Scholar 

  66. Wang X L, Sun M, Mei J, et al. Identification of a Spindlin homolog in gibel carp (Carassius auratus gibelio). Comp Biochem Physiol B Biochem Mol Biol, 2005, 141:159–167 10.1016/j.cbpc.2005.02.011, 15939319, 1:CAS:528:DC%2BD2MXltVaqsLo%3D

    Article  PubMed  Google Scholar 

  67. Otto S P, Whitton J. Polyploid incidence and evolution. Annu Rev Gene, 2000, 34:401–437 10.1146/annurev.genet.34.1.401, 1:CAS:528:DC%2BD3MXlvFOjsg%3D%3D

    Article  Google Scholar 

  68. Venkatesh B. Evolution and diversity of fish genomes. Curr Opin Genet Dev, 2003, 13:588–592 10.1016/j.gde.2003.09.001, 14638319, 1:CAS:528:DC%2BD3sXpt1SnsLg%3D

    Article  PubMed  Google Scholar 

  69. Allendorf F W, Thorgaard G H. Tetraploidy and the evolution of Salmonid fishes. In: Turner B J, ed. Evolutionary Genetics of Fishes. New York: Plenum Press, 1984. 1–53

    Chapter  Google Scholar 

  70. Ferris S D. Tetraploidy and the evolution of the catostomid fishes. In: Turner B J, ed. Evolutionary Genetics of Fishes. New York: Plenum Press, 1984. 55–93

    Chapter  Google Scholar 

  71. Soltis D E, Soltis P S. Polyploidy: Recurrent formation and genome evolution. TREE, 1999, 14:348–352 10441308

    PubMed  Google Scholar 

  72. Comai L. The advantages and distanvages of being polyploid. Nat Rev Genet, 2005, 6:836–846 10.1038/nrg1711, 16304599, 1:CAS:528:DC%2BD2MXhtFygt7%2FO

    Article  PubMed  Google Scholar 

  73. Otto S P. The evolutionary consequences of polyploidy. Cell, 2007, 131:452–462 10.1016/j.cell.2007.10.022, 17981114, 1:CAS:528:DC%2BD2sXhtlWitr%2FJ

    Article  PubMed  Google Scholar 

  74. Vrijenhoek R C. Polyploid hybrids: Multiple origins of a treefrog species. Curr Biol, 2006, 16:R245–R247 10.1016/j.cub.2006.03.005, 16581499, 1:CAS:528:DC%2BD28XjtFGhsrw%3D

    Article  PubMed  Google Scholar 

  75. Postlethwait J, Amores A, Cresko W, et al. Subfunction partitioning, the teleost radiation and the annotation of the human genome. Trends Genet, 2004, 20:481–490 10.1016/j.tig.2004.08.001, 15363902, 1:CAS:528:DC%2BD2cXnsFGntr8%3D

    Article  PubMed  Google Scholar 

  76. Taylor J S, Braasch I, Frickey T, et al. Genome duplication, a trait shared by 22000 species of ray-finned fish. Genome Res, 2003, 13:382–390 10.1101/gr.640303, 12618368, 1:CAS:528:DC%2BD3sXit1Wgtrc%3D

    Article  PubMed  PubMed Central  Google Scholar 

  77. Zhang J. Evolution by gene duplication: an update. Trends Ecol Evol, 2003, 18:292–298 10.1016/S0169-5347(03)00033-8

    Article  Google Scholar 

  78. He X, Zhang J. Rapid subfunctionalization accompanied by prolonged and substantial neofunctionalization in duplicate gene evolution. Genetics, 2005, 169:1157–1164 10.1534/genetics.104.037051, 15654095

    Article  PubMed  PubMed Central  Google Scholar 

  79. Conant G C, Wolfe K H. Turning a hobby into a job: How duplicated genes find new functions. Nat Rev Genet, 2008, 9:938–950 10.1038/nrg2482, 19015656, 1:CAS:528:DC%2BD1cXhtlyhtbjL

    Article  PubMed  Google Scholar 

  80. Liu S, Li Z, Gui J F. Fish-specific duplicated dmrt2b contributes to a divergent function through Hedgehog pathway and maintains left-right asymmetry establishment function. PLoS One, 2009, 4:e7261 10.1371/journal.pone.0007261, 19789708, 1:CAS:528:DC%2BD1MXht1altLjP

    Article  PubMed  PubMed Central  Google Scholar 

  81. Stöck M, Lamatsch D K, Steinlein C, et al. A bisexually reproducing all-triploid vertebrate. Nat Genet, 2002, 30:325–328 10.1038/ng839, 11836500

    Article  PubMed  Google Scholar 

  82. Christiansen D G, Reyer H U. From clonal to sexual hybrids: Genetic recombination via triploids in all-hybrid populations of water frogs. Evolution, 2009, 63:1754–1768 10.1111/j.1558-5646.2009.00673.x, 19245393, 1:CAS:528:DC%2BD1MXptFCrurs%3D

    Article  PubMed  Google Scholar 

  83. Wang D, Mao H L, Peng J X, et al. Discovery of a male-biased mutant family and identification of a male-specific SCAR marker in gynogenetic gibel carp Carassius auratus gibelio. Prog Nat Sci, 2009, 19:1537–1544 10.1016/j.pnsc.2009.04.008, 1:CAS:528:DC%2BC3cXhtFCjsrw%3D

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JianFang Gui.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gui, J., Zhou, L. Genetic basis and breeding application of clonal diversity and dual reproduction modes in polyploid Carassius auratus gibelio. Sci. China Life Sci. 53, 409–415 (2010). https://doi.org/10.1007/s11427-010-0092-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-010-0092-6

Keywords

Navigation