Skip to main content

Advertisement

Log in

Molecular approaches for biodegradation of polycyclic aromatic hydrocarbon compounds: a review

  • Review Paper
  • Published:
Reviews in Environmental Science and Bio/Technology Aims and scope Submit manuscript

Abstract

The waste generated from industrial processes and operations including domestic wastes when treated partially and disposed in soil–water environment enter to lakes, streams, rivers, oceans and other water bodies. The pollutants get dissolved or lie suspended in water or get deposited on soil sediment beds. This results on aquatic and terrestrial pollution which ultimately impact ecosystems causing toxicity to biota and human beings. Industries such as petrochemical, pharmaceutical, insecticides and fertilizers generates the hazardous waste comprising of inorganic and organic compounds. Organic compounds mainly composed polycyclic aromatic hydrocarbons (PAHs), are one of the toxic environmental pollutant. This paper highlights the physicochemical properties, bioremediation treatment and its mechanism for the waste containing PAH. The process of biological remediation depends upon the metabolic action of microbe toward the contaminant which can be achieved by optimum water and nutrient supply and some other limiting factors. The enzymatic degradation gives the molecular approaches for bioremediation. The study also highlighted the molecular approaches which are helpful in revealing functional, structural and communal information about microbial diversity for exploring the routes of degradation pathway of bioremediation process and future scope to bioremediation of PAHs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abu Laban N, Selesi D, Rattei T, Tischler P, Meckenstock RU (2010) Identification of enzymes involved in anaerobic benzene degradation by a strictly anaerobic iron-reducing enrichment culture. Environ Microbiol 12:2783–2796

    CAS  Google Scholar 

  • Aitken MD, Stringfellow WT, Nagel RD, Kazunga C, Chen SH (1998) Characteristics of phenanthrene-degrading bacteria isolated from soils contaminated with polycyclic aromatic hydrocarbons. Can J Microbiol 44:743–752

    CAS  Google Scholar 

  • Alcade M, Bulter T, Arnold FH (2002) Colorimetric assays for biodegradation of polycyclic aromatic hydrocarbons by fungal laccases. J Biomol Screen 7(6):547–553

    Google Scholar 

  • Alexander M (1977) Introduction to soil microbiology, 2nd edn. Wiley, NewYork, p 207

    Google Scholar 

  • Allen CCR, Boyd DR, Hempenstall F, Larkin MJ, Sharma ND (1999) Contrasting effects of nonionic surfactant on the biotransformation of polycyclic aromatic hydrocarbons to cis-dihydrodiols by soil bacteria. Appl Environ Microbiol 65:1335–1339

    CAS  Google Scholar 

  • Amann RI, Ludwig W, Schleifer KH (1995) Identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59:143–169

    CAS  Google Scholar 

  • Amatya PL, Hettiaratchi JPA, Joshi RC (2002) Biotreatment of flare pit waste. J Can Petrol Technol 41:30–36

    CAS  Google Scholar 

  • Arun A, Raja PP, Arth R, Ananthi M, Kumar KS, Eyin M (2008) Polycyclic aromatic hydrocarbons (PAHs) biodegradation by Basidiomycetes Fungi, PseudomonasIsolate and their cocultures: comparative in vivo and in silico approach. Appl Biochem Biotechnol 151:13–142

    Google Scholar 

  • Atagana HI, Haynes RJ, Wallis FM (2003) Optimization of soil physical and chemical conditions for the bioremediation of creosote-contaminated soil. Biodegradation 14:297–307

    CAS  Google Scholar 

  • Baastiaens L, Springael D, Dejonghe W, Wattiau P, Verachtert H, Diels L (2001) A transcriptional luxAB reporter fusion responding to fluorene in 305 Sphingomonas sp. LB126 and its initial characterization for whole-cell bioreporter purposes. Res Microbiol 15:849–859

    Google Scholar 

  • Baldrian P, Der Wiesche IN, Gabriel J, Nerud F, Zadražil F (2000) Influence of cadmium and mercury on activities of ligninolytic enzymes and degradation of polycyclic aromatic hydrocarbons by Pleurotusostreatusin soil. Appl Environ Microbiol 66(6):2471–2478

    CAS  Google Scholar 

  • Bamforth SM, Manning DAC, Singleton I (2005) Naphthalene transformation by the Pseudomonas at an elevated pH. J Chem Technol Biotechnol 80:723–736. doi:10.1002/jctb.1276

    CAS  Google Scholar 

  • Banerjee DK, Fedorak PM, Hashimoto A, Masliyah JH, Pickard MA, Gray MR (1995) Monitoring the biological treatment of anthracene-contaminated soil in a rotating-drum bioreactor. Appl Microbiol Biotechnol 43:521–528

    CAS  Google Scholar 

  • Beam HW, Perry JJ (1973) Co-metabolism as a factor in microbial degradation of cycloparaffinic hydrocarbons. Arch Microbiol 91:87–90

    CAS  Google Scholar 

  • Bergmann F, Selesi D, Weinmaier T, Tischler P, Rattei T, Meckenstock RU (2011) Genomic insights into the metabolic potential of the polycyclic aromatic hydrocarbon degrading sulfate-reducing Deltaproteobacterium N47. Environ Microbiol 13:1125–1137

    CAS  Google Scholar 

  • Bezalel Y, Hadar P, Fu P, Freeman JP, Cerniglia CE (1996) Initial oxidation products in the metabolism of pyrene, anthracene, fluorene, and dibenzothiophene by the white rot fungus Pleurotusostreatus. Appl Environ Microbiol 62(7):2554–2559

    CAS  Google Scholar 

  • Bezalel L, Hadar Y, Cerniglia CE (1997) Enzymatic mechanisms involved in phenanthrene degradation by the white rot fungus Pleurotusostreatus. Appl Environ Microbiol 63:2495–2501

    CAS  Google Scholar 

  • Boldrin B, Andreas T, Fritzche C (1993) Degradation of phenanthrene, fluorene, fluoranthene and pyrene by a Mycobacterium spp. Appl Environ Microbiol 59:1927–1930

    CAS  Google Scholar 

  • Boonchan S (1998) Biodegradation of polycyclic aromatic hydrocarbons: application of fungal–bacterial cocultures and surfactants. Thesis, Victoria University of Technology, Melbourne Victoria

  • Boonchan S, Britz FL, Stanley GA (2000) Degradation and mineralization of high-molecular-weight polycyclic aromatic hydrocarbons by defined fungal-bacterial cocultures. Appl. Environ. Microbiol. 66:1007–1019

  • Børresen MH, Rike AG (2007) Effects of nutrient content, moisture content and salinity on mineralization of hexadecane in an Arctic soil. Cold Regions Sci Technol 48:129–138

    Google Scholar 

  • Bulter T, Alcalde M, Sieber V, Meinhold P, Schlachtbauer C, Arnold FH (2003) Functional expression of a fungal laccase in Saccharomyces cerevisiae by directed evolution. Appl Environ Microbiol 69:987–995

    CAS  Google Scholar 

  • Bustin SA, Benes V, Nolan T, Pfaffl MW (2005) Quantitative real-time RT-PCR—a perspective. J Mol Endocrinol 34:597–601

    CAS  Google Scholar 

  • Caracciolo AB, Bottoni P, Grenni P (2010) Fluorescence in situ hybridization in soil and water ecosystems: a useful method for studying the effect of xenobiotics on bacterial community structure. Toxicol Environ Chem 92:567–579

    CAS  Google Scholar 

  • Carmichael AB, Wong LL (2001) Protein engineering of Bacillus megaterium CYP102—the oxidation of polycyclic aromatic hydrocarbons. Eur J Biochem 268:3117–3125

    CAS  Google Scholar 

  • Casillas RP, Crow SA, Heinze TM, Deck J, Cerniglia CE (1996) Initial oxidation and subsequent conjugative metabolites produced during the metabolism of phenanthrene by fungi. J Ind Microbiol 16:205–215

  • Cerniglia CE (1984) Microbial degradation of polycyclic aromatic hydrocarbons. Adv Appl Microbiol 30:31–71

    CAS  Google Scholar 

  • Cerniglia CE (1992) Biodegradation of polycyclic aromatic hydrocarbons. Biodegradation 3:351–368

    CAS  Google Scholar 

  • Cerniglia CE (1997) Fungal metabolism of polycyclic aromatic hydrocarbons: past, present and future applications in bioremediation. J Ind Microbiol Biotechnol 19:324–333

    CAS  Google Scholar 

  • Cerniglia CE, Heitkamp MA (1989) In: Varanasi U (ed) Metabolism of Polycyclic aromatic hydrocarbon in Aquatic Environment. CRC Press Inc., Boca Raton FL

  • Cerniglia CE, Kelly DW, Freeman JP, Miller DW (1986) Microbial metabolism of pyrene. Chem Biol Interact 57:203–216

    CAS  Google Scholar 

  • Chauhan A, Fazlurrahman Oakeshott JG, Jain RK (2008) Bacterial metabolism of polycyclic aromatic hydrocarbons: strategies for bioremediation. J Ind Microbiol 48:95–113

    CAS  Google Scholar 

  • Chen SH, Aitken MD (1999) Salicylate stimulates the degradation of high molecular weight polycyclic aromatic hydrocarbons by Pseudomonas saccharophila P15. Environ Sci Technol 33:435–439

  • Collins PJ, Dobson ADW (1996) Oxidation of fluorene and phenanthrene by Mn(II) dependent peroxidase activity in whole cultures of Trametes (coriolus) versicolor. Biotechnol Lett 18:801–804

    CAS  Google Scholar 

  • Collins JF, Brown JP, Dawson SV, Marty MA (1991) Risk assessment for benzo[a] pyrene. Regul Toxicol Pharmacol 13:170–184

    CAS  Google Scholar 

  • Cooper CS, Grover PL, Sims P (1983) The metabolism and activation of benzo(a)pyrene. Progress Drug Metabol 7:295–396

    CAS  Google Scholar 

  • Crameri A, Stemmer WPC (1995) Combinatorial multiple cassette mutagenesis creates all the permutations of mutant and wildtype sequences. Biotechniques 18:194–196

    CAS  Google Scholar 

  • Crameri A, Whitehorn EA, Tate E, Stemmer WPC (1996) Improved green fluorescent protein by molecular evolution using DNA shuffling. Nat Biotechnol 14:315–319

    CAS  Google Scholar 

  • Cunningham CJ, Ivshina IB, Lozinsky VI, Kuyukina MS, Philp JC (2004) Bioremediation of diesel contaminated soil by microorganisms immobilised in polyvinyl alcohol. Int Biodeterior Biodegrad 54(2–3):167–174

    CAS  Google Scholar 

  • Das N, Chandran P (2011) Microbial degradation of petroleum hydrocarbon contaminants: an overview biotechnology research international volume. Article ID 941810. p 13. doi:10.4061/2011/941810

  • Da-Silva M, Cerniglia CE, Pothuluri JV, Canhos VO, Esposito E (2003) Screening filamentous fungi isolated from estuarine sediments for the ability to oxidise polycyclic aromatic hydrocarbons. World J Microbiol Biotechnol 19:399–405

    CAS  Google Scholar 

  • Delmotte N, Knief C, Chaffron S, Innerebner G, Roschitzki B, Schlapbach R, Von Mering C, Vorholt JA (2009) Community proteogenomics reveals insights into the physiology of phyllosphere bacteria. Proc Natl Acad Sci USA 106:16428–16433

    CAS  Google Scholar 

  • Denome SA, Stanley DC, Olson ES, Young KD (1993) Metabolism of dibenzothiophene and naphthalene in Pseudomonas strains: complete DNA sequence of an upper naphthalene catabolic pathway. J Bacteriol 175:6890–6901

    CAS  Google Scholar 

  • Derz K, Klinner U, Schupan I, Stackebrandt E, Kroppenstedt RM (2005) Mycobacterium pyrenivorans sp. nov., a novel polycyclic-aromatichydrocarbon-degrading species. Int J Syst Evolut Microbiol 54:2313–2317

    Google Scholar 

  • DeSantis TZ, Brodie EL, Moberg JP, Zubieta IX, Piceno YM, Andersen GL (2007) High-density universal 16S rRNA microarray analysis reveals broader diversity than typical clone library when sampling the environment. Microb Ecol 53:371–383

    CAS  Google Scholar 

  • Díaz MP, Boyd KG, Grigson SJW, Burgess JG (2002) Biodegradation of crude oil across a wide range of salinities by an extremely halotolerant bacterial consortium MPD-M, immobilized onto polypropylene fibers. Biotechnol Bioeng 79(2):145–153

    Google Scholar 

  • Ding A, Sun Y, Dou J, Cheng L, Jiang L, Zhang D, Zhao X (2013) Characterizing microbial activity and diversity of hydrocarbon-contaminated sites 137-160.http://dx.doi.org/10.5772/50480

  • Dodor DE, Hwang HM, Ekunwe SIN (2004) Oxidation of anthracene and benzo[a]pyrene by immobilized laccase from Trametesversicolor. Enzyme Microb Technol 35:210–217

    CAS  Google Scholar 

  • Dubey SK, Tripathi AK, Upadhyay SN (2006) Exploration of soil bacterial communities for their potential as bioresource. Bioresour Technol 97(17):2217–2224

    CAS  Google Scholar 

  • Erickson DC, Loehr RC, Neuhauser EF (1993) PAH loss during bioremediation of manufactured gas plant site soil. Water Res 27:911–919

    CAS  Google Scholar 

  • Fan CE, Reinfelder JR (2003) Phenanthrene accumulation kinetics in marine diatoms. Environ Sci Technol 37:3405–3412

    CAS  Google Scholar 

  • Ferris MJ, Ward DM (1997) Seasonal distributions of dominant 16S rRNA-defined populations in a hot spring microbial mat examined by denaturing gradient gel electrophoresis. Appl Environ Microbiol 63:1375–1381

    CAS  Google Scholar 

  • Fisher MM, Triplett EW (1999) Automated approach for ribosomal intergenic spacer analysis of microbial diversity and its application to freshwater bacterial communities. Appl Environ Microbiol 65:4630–4636

    CAS  Google Scholar 

  • Freeman WM, Walker SJ, Vrana KE (1999) Quantitative RT-PCR: pitfalls and potential. BioTechniques 26(1):112–122, 1245

  • Furono S, Pazolt K, Rabe C, Neutr TR, Harm H, Wickly LY (2009) Fungal mycelia allow chemotactic dispersal of polycyclic aromatic hydrocarbon degrading bacteria in water unsaturated system. Environ Microbiol 12(6):1391–1398

    Google Scholar 

  • Gentry TJ, Wickham GS, Schadt CW, He Z, Zhou J (2006) Microarray applications in microbial ecology research. Microb Ecol 52:159–175

    CAS  Google Scholar 

  • Gianfreda L, Bollag JM (2002) Isolated enzymes for the transformation and detoxification of organic pollutants. In: Burns RG, Dick RP (eds) Enzymes in the environment: activity, ecology, and applications. Marcel Dekker Inc, New York, pp 495–538

    Google Scholar 

  • Gianfreda L, Rao MA (2004) Potential of extra cellular enzymes in remediation of polluted soils: a review. Enzyme Microb Technol 35:339–354

    CAS  Google Scholar 

  • Gibson DT, Subranian V (1984) Microbial degradation of aromatic hydrocarbons. In: Gibson DT (ed) Microbial degradation of organic compounds. Marcel Dekker Inc, New York, pp 181–252

    Google Scholar 

  • Gibson DT, Venkatanarayana D, Jerina M, Yagi H, Yeh H (1975) Oxidation of carcinogens benzo(a)pyrene and benzo(a) anthracene to dihydrodiols by a bacterium. Science 189:295–297

    CAS  Google Scholar 

  • Goyal AK, Zylstra GJ (1997) Genetics of naphthalene and phenanthrene degradation by Comamonas testosteroni. J Ind Microbiol Biotechnol 19:401–407

    CAS  Google Scholar 

  • Grimm AC, Harwood CS (1997) Chemotaxis of pseudomonas putida to the polyaromatic hydrocarbon napthalene. Appl Envion Microb 63:4111–4115

    CAS  Google Scholar 

  • Guillen MD, Sopelana P, Partearroyo MA (1997) Food as a source of polycyclic aromatic carcinogens. Rev Environ Health 12:133–146

    CAS  Google Scholar 

  • Habe H, Omori T (2003) Genetics of polycyclic aromatic hydrocarbon degradation by diverse aerobic bacteria. Biosci Biotechnol Biochem 67:225–243

    CAS  Google Scholar 

  • Hahn D, Amann RI, Ludwig W, Akkermans ADL, Schleifer KH (1992) Detection of microorganisms in soil after in situ hybridization with rRNA-targeted, fluorescently labeled oligonucleotides. J Gen Microbiol 138:879–887

    CAS  Google Scholar 

  • Hammel KE, Kalyanaraman B, Kirk TK (1986) Oxidation of polycyclic aromatic hydrocarbons and dibenzo(p)dioxins by Phanerochaete chrysosporiumligninase. J Biol Chem 261:16948–16952

    CAS  Google Scholar 

  • Hammel KE, Gai WZ, Green B, Moen MA (1992) Oxidative degradation of phenanthrene by the ligninolytic fungus Phanerochaete chrysosporium. Appl Environ Microbiol 58:1832–1838

    CAS  Google Scholar 

  • Han M-J, Lee SY (2006) The Escherichia coli proteome: past, present, and future prospects. Microbiol Mol Biol Rev 70:362–439

    CAS  Google Scholar 

  • Harayama S (1997) polycyclic aromatic hydrocarbon bioremediation design. Curr Opin Biotechnol 8:268–273

    CAS  Google Scholar 

  • Harayama S, Timmis KN (1992) Aerobic biodegradation of aromatic hydrocarbons by bacteria. In: Sigel H, Sigel A (eds) Metal ions in biological systems, vol 28. Marcel Dekker, New York, pp 99–156

    Google Scholar 

  • Harford-Cross CF, Carmichael AB, Allan FK, England PA, Rouch DA, Wong LL (2000) Protein engineering of cytochrome P450(cam) (CYP101) for the oxidation of polycyclic aromatic hydrocarbons. Protein Eng 13:1218

    Google Scholar 

  • Haritash AK, Kaushik CP (2009) Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review. J Hazard Mater 169(1–3):1–15. doi:10.1016/j.jhazmat.2009.03.137

    CAS  Google Scholar 

  • Harvey RG (1996) Mechanisms of carcinogenesis of polycyclic aromatic hydrocarbons. Polycycl Aromat Compd 9:1–23

    CAS  Google Scholar 

  • Heitkamp MA, Cerniglia CE (1988) Mineralization of polycyclic aromatic hydrocarbons by a bacterium isolated from sediment below an oil field. Appl Environ Microbiol 54:1612–1614

    CAS  Google Scholar 

  • Heitkamp MA, Cerniglia CE (1989) Polycyclic aromatic hydrocarbon degradation by a Mycobacterium sp. in microcosms containing sediment and water from a pristine ecosystem. Appl Environ Microbiol 55:1968–1973

    CAS  Google Scholar 

  • Heuer H, Krsek M, Baker P, Smalla K, Wellington EMH (1997) Analysis of actinomycete communities by specific amplification of genes encoding 16S rRNA and gel-electrophoretic separation in denaturing gradients. Appl Environ Microbiol 63:3233–3241

    CAS  Google Scholar 

  • Hill GT, Mitkowski NA, Aldrich-Wolfe L, Emele LR, Jurkonie DD, Ficke A, Maldonado-Ramireza S, Lyncha ST, Nelson EB (2000) Methods for assessing the composition and diversity of soil microbial communities. Appl Soil Ecol 15:25–36

    Google Scholar 

  • Horvath RS (1972) Microbial co-metabolism and the degradation of organic compounds in nature. Bacteriol Rev 36(2):146–155

  • Jain RK, Kapur M, Labana S, Lal B, Sarma PM, Bhattacharya D, Thakur S (2005) Microbial diversity: application of microorganisms for the biodegradation of xenobiotics. Curr Sci 89(1):101–112

  • Janke D, Fritsche W (1985) Nature and significance of microbial cometabolism of xenobiotics. J Basic Microbiol 25:603–619

    CAS  Google Scholar 

  • Joyce C (2002) Quantitative RT-PCR. A review of current methodologies. Methods Mol Biol 193(83):92. doi:10.1385/1-59259-283-X:083

    Google Scholar 

  • Juhasz A, Naidu R (2000) Enrichment and isolation of non-specific aromatic degraders from unique uncontaminated (Plant and Fecal Material) sources and contaminated coils. J Appl Microbiol 89:642–650

    CAS  Google Scholar 

  • Kallimanis A, Frillingos S, Drainas C, Koukkou AI (2007) Taxonomic identification, phenanthrene uptake activity and membrane lipid alterations of the PAH degrading Arthrobacter sp. strain Sphe3. Appl Microbiol Biotechnol 76:709–717

    CAS  Google Scholar 

  • Kanaly RA, Harayama S (2000) Biodegradation of high molecular weight polycyclic aromatic hydrocarbons by bacteria. J Bacteriol 182(8):2059–2067

    CAS  Google Scholar 

  • Kanaly R, Bartha R, Watanabe K, Harayama S (2000) Rapid mineralisation of benzo(a)pyrene by a microbial consortium growing on diesel fuel. Appl Environ Microbiol 66(10):4205–4211

    CAS  Google Scholar 

  • Kang XP, Jiang T, Li YQ (2010) A duplex real-time RT-PCR assay for detecting H5N1 avian influenza virus and pandemic H1N1 influenza virus. Virol J 7:113. doi:10.1186/1743-422X-7-113

    Google Scholar 

  • Kapoor M, Lin W (1984) Studies on the induction of aryl hydrocarbon (benzo(a)pyrene) hydroxylase in Neurosporacrassa, and itssuppression by sodium selenite. Xenobiotica 14:903–915

    CAS  Google Scholar 

  • Kastner M, Mahro B (1996) Microbial degradation of polycyclic aromatic hydrocarbons in soils affected by the organic matrix of compost. Appl Microbiol Biotechnol 44:668–675

    CAS  Google Scholar 

  • Kastner M, Breuer-Jammali M, Mahro B (1998) Impact of inoculation protocol, salinity and pH on the degradation of polycyclic aromatic hydrocarbons and survival of PAH-degrading bacteria introduced into soil. Appl Environ Microbiol 64(1):359–362

    CAS  Google Scholar 

  • Keller M, Hettich R (2009) Environmental proteomics: a paradigm shift in characterizing microbial community. Microbiol Mol Biol Rev 73(1):62–70. doi:10.1128/MMBR.00028-08

    CAS  Google Scholar 

  • Kelley I, Freeman JP, Evans FE, Cerniglia CE (1993) Identification of metabolites from the degradation of fluoranthene by Mycobacterium sp. strain PYR-1. Appl Environ Microbiol 59:800–806

    CAS  Google Scholar 

  • Khan AA, Wang RF, Cao WW, Doerge DR, Wennerstrom D, Cerniglia CE (2001) Molecular cloning, nucleotide sequence and expression of genes encoding a polycyclic ring dioxygenase from Mycobacterium sp. strain PYR-1. Appl Environ Microbiol 67:3577–3585

    CAS  Google Scholar 

  • Kim YH, Cho K, Yun SH, Kim JY, Kwon KH, Yoo JS, Kim SI (2006a) Analysis of aromatic catabolic pathways in Pseudomonas putida KT 2440 using a combined proteomic approach: 2DE/MS and cleavable isotope-coded affinity tag analysis. Proteomics 6:1301–1318

    CAS  Google Scholar 

  • Kim SJ, Kweon O, Freeman JP, Jones RC, Adjei MD, Jhoo JW, Edmondson RD, Cerniglia CE (2006b) Molecular cloning and expression of genes encoding a novel dioxygenase involved in low- and high-molecular-weight polycyclic aromatic hydrocarbon degradation in Mycobacterium vanbaalenii PYR-1. Appl Environ Microbiol 72(2):1045–1054

    CAS  Google Scholar 

  • Kirchhof G, Schloter M, Assmus B, Hartmann A (1997) Molecular microbial ecology approaches applied to diazotrophs associated with non-legumes. Soil Biol Biochem 29:853–862

    CAS  Google Scholar 

  • Kiyohara H, Torigoe S, Kaida N, Asaki T, Iida T, Hayashi H, Takizawa N (1994) Cloning and characterization of a chromosomal gene cluster, pah, that encodes the upper pathway for phenanthrene and naphthalene utilization by Pseudomonas putida OUS82. J Bacteriol 176:2439–2443

    CAS  Google Scholar 

  • Koukkou AI, Drainas C (2008) Addressing PAH biodegradation in Greece: biochemical and molecular approaches. IUBMB Life 60(5):275–280

    CAS  Google Scholar 

  • Krivobok S, Kuony S, Meyer C, Louwagie M, Willison JC, Jouanneau Y (2003) Identification of pyrene-induced proteins in Mycobacterium sp. strain 6PY1: evidence for two ring hydroxylating dioxygenase. J Bacteriol 185:3828–3841

    CAS  Google Scholar 

  • Lafortune I, Juteau P, Déziel E, Lépine F, Beaudet R, Villemur R (2009) Bacterial diversity of a consortium degrading high-molecular-weight polycyclic aromatic hydrocarbons in a two-liquid phase biosystem. Microb Ecol 57:455–468

    CAS  Google Scholar 

  • Laha S, Tansel B, Ussawarujikulchai A (2009) Surfactant–soil interactions during surfactant amended remediation of contaminated soils by hydrophobic organic compounds: a review. J Environ Manag 90:95–100

    CAS  Google Scholar 

  • Larsson B, Sahlberg G (1982) Polycyclic aromatic hydrocarbons in lettuce. Influence of a highway and an aluminium smelter. In: Cooke M, Denis AJ, Fisher GL (eds) Polynuclear aromatic hydrocarbons: physical and biological chemistry. Battelle Press, Colombus, pp 417–426

    Google Scholar 

  • Lau KL, Tsang YY, Chiu S (2003) Use of spentmushroom compost to bioremediate PAH-contaminated samples. Chemosphere 52:1539–1546

    CAS  Google Scholar 

  • Launen L, Pinto LJ, Wiebe C, Kiehlmann E, Moore MM (1995) The oxidation of pyrene and benzo[a]pyrene by nonbasidiomycete soil fungi. Canad J Microbiol 41:477–488

  • Lee HS, Lee K (2001) Bioremediation of diesel-contaminated soil by bacterial cells transported by electrokinetics. J Microbiol Biotechnol 11:1038–1045

    CAS  Google Scholar 

  • Legge R (2012) Analysis of microbial diversity by amplicon pyrosequencing. Dissertations and Theses in Food Science and Technology. Paper 25

  • Li T, Wu TD, Mazéas L, Toffin L, Guerquin-Kern JL, Leblon G, Bouchez T (2008a) Simultaneous analysis of microbial identity and function using NanoSIMS. Environ Microbiol 10:580–588

    CAS  Google Scholar 

  • Li X, Li P, Lin X, Zhang C, Li Q, Gong Z (2008b) Biodegradation of aged polycyclic aromatic hydrocarbons (PAHs) by microbial consortia in soil and slurry phases. J Hazard Mater 150(1):21–26

    CAS  Google Scholar 

  • Liang Y, Gardener D, Miller CD, Chen D, Anderson AJ, Weimer BC, Sims RC (2006) Study of biochemical pathways and enzymes involved in pyrene degradation by Mycobacterium sp. strainKMS KMS. Appl Environ Microbiol 72:7821–7828

    CAS  Google Scholar 

  • Lijinsky W (1991) The formation and occurence of polynucleararo- matic hydrocarbons associated with food. Mutat Res 259:251–262

    CAS  Google Scholar 

  • Liu Y, Zhang J, Zhang Z (2004) Isolation and characterisation of polycyclicaromatic hydrocarbons-degrading Sphingomonas sp. Strain ZL5. Biodegradation 15:205–212

    CAS  Google Scholar 

  • Lopez de Victoria G, Lovell CR (1993) Chemotaxis of azospirillum species to aromatic compounds. Appl Environ Microb 59:2951–2955

    CAS  Google Scholar 

  • Low JYS, Abdullah N, Vikineswary S (2009) Evaluation of support materials for immobilization of Pycnoporus sanguinues mycelia for laccase production and biodegradation of polycyclic aromatic hydrocarbons. Res J Environ Sci 3(3):357–366. ISSN 1819-3412

  • Majcherczyk A, Johannes C, Huttermann A (1998) Oxidation of polycyclic aromatic hydrocarbons (PAH) by laccase of Trametesversicolor. Enzyme Microbiol Technol 22:335–341

    CAS  Google Scholar 

  • Mallick S, Chatterjee S, Dutta TK (2007) A novel degradation pathway in the assimilation of phenanthrene by Staphylococcus sp. strain PN/Y via meta-cleavage of 2-hydroxy-1-naphthoic acid: formation of trans-2,3-dioxo-5-(2′-hydroxyphenyl)-pent-4-enoic acid. Microbiology 153:2104–2115

    CAS  Google Scholar 

  • Mapelli V, Olsson L, Nielsen J (2009) Metabolicfootprinting in microbiology: methods and applications in functional genomics and biotechnology. Trends Biotechnol 26:490–497

    Google Scholar 

  • Margesin R, Schinner F (2001) Biodegradation and bioremediation of hydrocarbons in extreme environments. Appl Microbiol Biotechnol 56:650–663

    CAS  Google Scholar 

  • Mastral AM, Callen MS (2000) A review on polycyclic aromatic hydrocarbon (PAH) emissions from energy generation. Environ Sci Technol 34:3051–3057

    CAS  Google Scholar 

  • McKenna EJ, Heath RD (1976) Biodegradation of polynuclear aromatic hydrocarbon pollutants by soil and water microorganisms. University of Illinois (Urbana-Champaign) Research Report no. 113

  • Mersch-Sundermann V, Mochayedi S, Kevekordes S (1992) Genotoxicity of polycyclic aromatic hydrocarbons in Escherichia coli PQ37. Mutat Res 278:1–9

    CAS  Google Scholar 

  • Mester T, Tien M (2000) Oxidation mechanism of ligninolytic enzymes involved in the degradation of environmental pollutants. Int Biodeterior Biodegrad 46:51–59

    CAS  Google Scholar 

  • Miyata N, Iwahori K, Foght JM, Gray MR (2004) Saturable, energy dependent uptake of phenanthrene in aqueous phase by Mycobacterium sp. strain RJGII-135. Appl Environ Microbiol 70(1):363–369

    CAS  Google Scholar 

  • Molina MC, González N, Bautista LF, Sanz R, Simarro R, Sánchez I, Sanz JL (2009) Isolation and genetic identification of PAH degrading bacteria from a microbial consortium. Biodegradation 20:789–800

    CAS  Google Scholar 

  • Moody J, Freeman J, Doerge D, Cerniglia C (2001) Degradation of phenanthrene and anthracene by cell suspensions of Mycobacterium sp. PYR-1. Appl Environ Microbiol 67(4):1476–1483

    CAS  Google Scholar 

  • Moran MA (2009) Metatranscriptomics: eavesdropping on complex microbial communities. Microbe 4:329–335

    Google Scholar 

  • Mori T, Kitano S, Kondo R (2003) Biodegradation of chloronaphthalenes and polycyclic aromatic hydrocarbons by the white-rot fungus Phlebialindtneri. Appl Microbiol Biotechnol 61(4):380–383

    CAS  Google Scholar 

  • Mueller JG, Lantz SE, Blattmann BO, Chapman PJ (1991) Bench-scale evaluation of alternative biological treatment process for the remediation of pentachlorophenol and creosote contaminated materials: solid phase bioremediation. Environ Sci Technol 25:1045–1055

    CAS  Google Scholar 

  • Musat F, Galushko A, Jacob J, Widdel F, Kube M, Reinhardt R (2009) Anaerobic degradation of naphthalene and 2-methylnaphthalene by strains of marine sulfate-reducing bacteria. Environ Microbiol 11:209–219

    CAS  Google Scholar 

  • Muyzer G, Smalla K (1998) Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology. Antonie Van Leeuwenhoek 73:127–141

    CAS  Google Scholar 

  • Muyzer GE, de Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59:695–700. PMID 7683183. www.ncbi.nlm.nih.gov/pubmed/7683183

  • Nakagaki T, Kobayashi R, Nishiura Y, Ueda T (2004) Obtaining multiple separate food sources: behavioural intelligence in the Physarium plasmodium. Proc R Soc B 271:2305–2310

    Google Scholar 

  • Nichols NN, Lunde TA, Graden KC, Hallock KA, Kowalchyk CK, Southern RM, Soskin EJ, Ditty JL (2012) Chemotaxis to furan compounds by furan-degrading Pseudomonas strains. Appl Environ Microbiol 78(17):6365. doi:10.1128/AEM.01104-12

    CAS  Google Scholar 

  • Nylund L, Heikkila P, Hameila M, Pyy L, Linnainmaa K, Sorsa M (1992) Genotoxic e€ects and chemical composition of four creosotes. Mutat Res 265:223–236

    CAS  Google Scholar 

  • Ortegocalvo JJ, Marchenko AI, Votobyow AV, Borovick RV (2003) Chemotaxis in polycyclic aromatic hydrocarbon-degrading bacteria isolated from coal-tar and oil polluted rhizospheres. FEMS Microb Ecol 44:373–381

    Google Scholar 

  • Park KS, Sims RC, Dupont R (1990) Transformations of PAHs in soil systems. J Environ Eng (ASCE) 116:32–640

    Google Scholar 

  • Peltola R (2010) Bioavailability aspects of hydrophobic contaminant degradation in soils. ISSN 1795-7079. ISBN 978-952-10-4683-4

  • Phillips DH (1983) Fifty years of benzo(a)pyrene. Nature 303:472–486

    Google Scholar 

  • Pinyakong O, Habe H, Supaka N, Pinpanichkarn P, Juntongjin K, Yoshida T (2000) Identification of novel metabolites in the degradation of phenanthrene by Sphingomonassp. strain P2. FEMS Microbiol Lett 191:115–121

    CAS  Google Scholar 

  • Poretsky RS, Bano N, Buchan A, LeCleir G, Kleikemper J, Pickering M, Pate WM, Moran MA, Hollibaugh JT (2005) Analysis of microbial gene transcripts in environmental samples. Appl Environ Microbiol 71:4121–4126

    CAS  Google Scholar 

  • Pothuluri JV, Freeman JP, Evans FE, Cerniglia CE (1990) Fungal transformation of fluoranthene. Appl Environ Microbiol 56:2974–2983

    CAS  Google Scholar 

  • Pozdnyakova NN (2012) Involvement of the ligninolytic system of white-rot and litter-decomposing fungi in the degradation of polycyclic aromatic hydrocarbons. Biotechnol Res Int. Article ID 243217, p 20. doi:10.1155/2012/243217

  • Prabhu Y, Phale PS (2003) Biodegradation of phenanthrene by Pseudomonas sp. strain PP2: novel metabolic pathway, role of biosurfactant and cell surface hydrophobicity in hydrocarbon assimilation. Appl Microbiol Biotechnol 61:342–351

    CAS  Google Scholar 

  • Qiu YL, Sekiguchi Y, Imachi H, Kamagata Y, Tseng IC, Cheng SS, Ohashi A, Harada H (2004) Identification and isolation of anaerobic, syntropic phthalate isomer degrading microbes from methanogenic sludges treating wastewater from terepthalate manufacturing. Appl Environ Microbiol 70:1617–1626

    CAS  Google Scholar 

  • Rahman RNZA, Ghazali FM, Salleh AB, Basri M (2006) Biodegradation of hydrocarbon contamination by immobilized bacterial cells. J Microbiol 44(3):354–359

    Google Scholar 

  • Rama R, Mougin C, Boyer FD, Kollmann A, Malosse C, Sigoillot JC (1998) Biotransformation of benzo(a)pyrene in bench scale reactor using laccase of Pycnoporus cinnabarinus. Biotechnol Lett 20:1101–1104

    CAS  Google Scholar 

  • Rastogi G, Sani R (2011) Molecular techniques to assess microbial community structure, function, and dynamics in the environment. Microbes Microb Technol Agric Environ Appl. doi:10.1007/978-1-4419-7931-5_2

  • Renner R (1999) EPA to strengthen persistent, bioaccumulative and toxic pollutant controls—mercury first to be targeted. Environ Sci Technol 33:62

    Google Scholar 

  • Rockne KJ, Strand SE (1998) Biodegradation of bicyclic and polycyclic aromatic hydrocarbons in anaerobic enrichments. Environ Sci Technol 32:2962–2967

    Google Scholar 

  • Ruggaber TP, Talley JW (2006) Enhancing bioremediation with enzymatic processes: a review. Pract Period Hazard Toxic Radioact Waste Manag 10:73–85

    CAS  Google Scholar 

  • Sack U, Fritsche W (1997) Enhancement of pyrene mineralization in soil by wood-decaying fungi. FEMS Microbiol Ecol 22(1):77–83

    CAS  Google Scholar 

  • Sack U, Gunther T (1993) Metabolism of PAH by fungi and correlation with extracellular enzymatic activities. J. Basic Microbiol. 33:269–277

  • Salicis F, Krivobok MJS, Benoit-Guyod JL (1999) Biodegradation of fluoranthene by soil fungi. Chemosphere 38:3031–3039

    CAS  Google Scholar 

  • Schloss PD, Handelsman J (2003) Biotechnological prospects from metagenomics. Curr Opin Microbiol 14:303–310

    CAS  Google Scholar 

  • Schneider J, Grosser R, Jayasimhulu K, Xue W, Warshawsky D (1996) Degradation of pyrene, benz[a]anthracene, and benzo[a]pyrene byMycobacterium sp. strain RJGII-135, isolated from a former coal gasificationsite. Appl Environ Microbiol 62:13–19

    CAS  Google Scholar 

  • Schutzendubel A, Majcherczyk A, Johannes C, Huttermann A (1999) Degradation of fluorene, anthracene, phenanthrene, fluoranthene and pyrene lacks connection to the production of extracellular enzymes by Pleurotusostreatus and Bjerkanderaadjusta. Int Biodeterior Biodegrad 43:93–100

    CAS  Google Scholar 

  • Schwieger F, Tebbe CC (1998) A new approach to utilize PCR-single-strand conformation polymorphism for 16S rRNA gene-based microbial community analysis. Appl Environ Microbiol 64:4870–4876

    CAS  Google Scholar 

  • Semple KT, Cain RB, Schmidt S (1999) Biodegradation of aromatic compounds by microalgae. FEMS Microbiol Lett 170:291–300

    CAS  Google Scholar 

  • Semple KT, Morriss WJ, Paton GI (2003) Bioavailability of hydrophobic organic contaminants in soils: fundamental concepts and techniques for analysis. Eur J Soil Sci 54:809–818

    CAS  Google Scholar 

  • Seo JS, Keum YS, Hu Y, Lee SE, Li QX (2006) Phenanthrene degradation in Arthrobacter sp. P1-1: initial 1,2-, 3,4- and 9,10-dioxygenation, and meta- and ortho-cleavages of naphthalene-1,2-diol after its formation from naphthalene-1,2-dicarboxylic acid and hydroxyl naphthoic acids. Chemosphere 65:2388–2394

    CAS  Google Scholar 

  • Seo JS, Keum YS, Hu Y, Lee SE, Li QX (2007) Degradation of phenanthrene by Burkholderia sp. C3: initial 1,2- and 3,4-dioxygenation and meta- and ortho-cleavages of naphthalene-1,2-diol. Biodegradation 18:123–131

    CAS  Google Scholar 

  • Seo J-S, Keum Y-S, Li QX (2009) Bacterial degradation of aromatic compounds. Int J Environ Res Pub Health 6:278–309. doi:10.3390/ijerph6010278

    CAS  Google Scholar 

  • Sharma PM, Bhattacharya D, Krishnan S, Lal B (2004) Degradation of polycyclic aromatic hydrocarbons by a newly discovered enteric bacterium Leclercia adecarboxylata. Appl Environ Microbiol 70(5):3163–3166

    Google Scholar 

  • Shi Z, Tian L, Zhang Y (2010) Molecular biology approaches for understanding microbial polycyclic aromatic hydrocarbons (PAHs) degradation. Acta Ecol Sin 30:292–295

    Google Scholar 

  • Sims RC, Overcash MR (1983) Fate of polynuclear aromatic compounds (PNAs) in soil-plant systems. Residue Rev 88:1–68

    CAS  Google Scholar 

  • Sinha S, Chattopadhyay P, Pan I, Chatterjee S, Chanda P, Bandyopadhya D, Das K, Sen SK (2009) Microbial transformation of xenobiotics for environmental bioremediation. Afr J Biotechnol 8(22):6016–6027

    CAS  Google Scholar 

  • Smith CJ, Osborn AM (2009) Advantages and limitations of quantitative PCR (Q-PCR)-based approaches in microbial ecology. FEMS Microbiol Ecol 67:6–20

    CAS  Google Scholar 

  • Steffen K, Hatakka A, Hofrichter M (2003) Removal and mineralization of polycyclic aromatic hydrocarbons by litter decomposing basidiomycetous fungi. Appl Microbiol Biotechnol 60(1–2):212–217

    Google Scholar 

  • Stemmer WPC (1994a) DNA shuffling by random fragmentation and reassembly: in vitro recombination for molecular evolution. Proc Natl Acad Sci USA 91:10747–10751

    CAS  Google Scholar 

  • Stemmer WPC (1994b) Rapid evolution of a protein in vitro by DNA shuffling. Nature 370:389–391

    CAS  Google Scholar 

  • Su D, Li PJ, Frank S, Xiong XZ (2006) Biodegradation of benzo[a]pyrene in soil by Mucor sp. SF06 and Bacillus sp. SB02 co-immobilized on vermiculite. J Environ Sci 18(6):1204–1209

    CAS  Google Scholar 

  • Sutherland JB, Selby AL, Freeman JP, Evans FE, Cerniglia CE (1991) Metabolism of phenanthrene by Phanerochaete chrysosporium. Appl Environ Microbiol 57:3310–3316

    CAS  Google Scholar 

  • Sutherland JB, Fu PP, Yang SK, Vontungeln LS, Casillas RP, Crow SA, Cerniglia CE (1993) Enantiomeric composition of the trans-dihydrodiols produced from phenanthrene by fungi. Appl Environ Microbiol 59:2145–2149

  • Takata N, Sakata M (2002) Effect of photooxidation on delta C-13 of benzo(a)pyrene and benzo(e)pyrene in the atmosphere. Geochem J 36(3):235–245

    Google Scholar 

  • Tao X-Q, Lu G-N, Liu J-P, Li T, Yang L-N (2009) Rapid degradation of phenanthrene by using Sphingomonas sp. GY2B immobilized in calcium alginate gel beads. Int J Environ Res Publ Health 6:2470–2480

    CAS  Google Scholar 

  • Thies JE (2007) Soil microbial community analysis using terminal restriction fragment length polymorphisms. Soil Sci Soc Am J 71:579–591

    CAS  Google Scholar 

  • Tomotada I, NaSu M (2001) Current bioremediation practice and perspective. J Biosci Bioeng 92(1):1–8

    Google Scholar 

  • University of Minnesota Biocatalysis/Biodegradation Database (UMBBD) (2004) University of Minnesota. http://umbbd.ahc.umn.edu

  • Vanrooij JGM, Bodelierbade MM, Jongeneelen FJ (1993) Estimation of individual dermal and respiratory uptake of polycyclic aromatic-hydrocarbons in 12 coke-oven workers. Brit Jn Ind Med 50:623–632

    CAS  Google Scholar 

  • Varkonyi-Gasic E, Hellens RP (2010) qRT-PCR of small RNAs. Methods Mol Biol 631(109):22. doi:10.1007/978-1-60761-646-7_10

    Google Scholar 

  • Veeken AHM, Hamelers BVM (1999) Effect of substrate-seed mixing and leachate recirculation on solid state digestion of biowaste. In: Mata-Alvarez J, Tilche A, Cecchi F (eds) Proceedings of the second international symposium on anaerobic digestion of solid wastes. Barcelona 1. Gr_A®Ques 92:15-18: 250–257

  • Verdin A, Sahraoui AL-H, Durand R (2003) Degradation of benzo(a)pyrene by mitosporic fungi and extracellular oxidative enzymes. Int Biodeterior Biodegrad 53:65–70

  • Voordouw G (1998) Reverse sample genome probing of microbial community dynamics. ASM News 64:627–633

    Google Scholar 

  • Vyas B, Sasek V, Matucha M (1994) Degradation of anthracene by selected white rot fungi. FEMS Microbiol Ecol 14(1):65–70

    CAS  Google Scholar 

  • Walter U, Beyer M, Klein J, Rehm HJ (1991) Degradation of pyrene by rhodococcus sp. UW1. Appl Microbiol Biotechnol 34:671–676

  • Wang S, Li X, Liu W, Li P, Kong L, Ren W, Wu H, Tu Y (2012) Degradation of pyrene by immobilized microorganisms in saline-alkaline soil. J Environ Sci 24(9):1662–1669

    CAS  Google Scholar 

  • Wattiau P, Bastiaens L, van Herwijnen R, Daal L, Parsons JR, Renard ME, Springael D, Cornelis GR (2001) Fluorene degradation by Sphingomonas sp. LB126 proceeds through protocatechuic acid: a genetic analysis. Res Microbiol. 52(10):861–872

  • Weissenfels WD, Beyer M, Klein J, Rehm HJ (1991) Microbial metabolism of fluoranthene: isolation and identification of ring fission products. Appl Microbiol Biotechnol 34:528–535

    CAS  Google Scholar 

  • Widdle F, Rabus R (2001) Anaerobic biodegradation of saturated and aromatic hydrocarbons. Curr Opin Biotechnol 12:259–276

    Google Scholar 

  • Wilmes P, Bond PL (2006) Metaproteomics: studying functional gene expression in microbial ecosystems. Trends Microbiol 14:92–97

    CAS  Google Scholar 

  • Wilmes P, Wexler M, Bond PL (2008) Metaproteomics provides functional insight into activated sludge wastewater treatment. PLoS ONE 12(e1778):1–11

    Google Scholar 

  • Wilson NG, Bradley G (1996) The effect of immobilization on rhamnolipid production by Pseudomonas fluorescens. J Appl Bacteriol 81(5):525–530

    CAS  Google Scholar 

  • Wilson SC, Jones KC (1993) Bioremediation of soils contaminated with polynuclear aromatic hydrocarbons (PAHs): a review. Environ Pollut 88(229):249

    Google Scholar 

  • Wong JWC, Lai KM, Wan CK, Ma KK, Fang M (2002) Isolation and optimisation of PAH-degradative bacteria from contaminated soil for PAH bioremediation. Water Air Soil Pollut 139:1–13

    CAS  Google Scholar 

  • Wood TK (2008) Molecular approaches in bioremediation. Curr Opin Biotechnol 19:572–578

    CAS  Google Scholar 

  • Wu Y, Teng Y, Li Z, Liao X, Luo Y (2008a) Potential role of polycyclic aromatic hydrocarbons (PAHs) oxidation by fungal laccase in the remediation of an aged contaminated soil. Soil Biol Biochem 40:789–796

    CAS  Google Scholar 

  • Wu Y, Luo Y, Zou D, Ni J, Liu W, Teng Y, Li Z (2008b) Bioremediation of polycyclic aromatic hydrocarbons contaminated soil with Moilinia sp.: degradation and microbial community analysis. Biodegradation 19:247–257

    CAS  Google Scholar 

  • Wullings BA, van Beuningen AR, Janse JD, Akkermanns ADL (1998) Detection of Ralstoniasolanacearumwhich causes brown rot of potato, by fluorescent in situ hybridization with 23S rRNA-targeted probes. Appl Environ Microbiol 64:4546–4554

    CAS  Google Scholar 

  • Wunder T, Marr J, Kremer S, Sterner O, Anke H (1997) 1- Methoxypyrene and 1,6-dimethoxypyrene: two novel metabolites in fungal metabolism of polycyclic aromatic hydrocarbons. Arch Microbiol 167:310–316

  • Xie S, Liu J, Li L, Qiao C (2009) Biodegradation of malathion by Acinetobacter johnsonii MA19 and optimization of cometabolism substrates. J Environ Sci 21(1):2176–2182

  • Xu YH, Lu M (2010) Bioremediation of crude oil-contaminated soil: comparison of different biostimulation and bioaugmentation treatments. J Hazard Mater 183(1–3):395–401

    CAS  Google Scholar 

  • Yamazoe A, Yagi O, Oyaizu H (2004) Degradation of polycyclic aromatic hydrocarbon by a newly isolated dibenzofuran utilizing Janibacter sp strain yy 1. Appl microbial biot 65:211–218

  • Yuan SY, Wei SH, Chang BV (2000) Biodegradation of polycyclic aromatic hydrocarbons by a mixed culture. Chemosphere 41:1463–1468

    CAS  Google Scholar 

  • Zhang C, Bennet GN (2005) Biodegradation of xenobiotics by anaerobic bacteria. Appl Microbiol Biotechnol 67:600–618

    CAS  Google Scholar 

  • Zhang Y, Zhu YX, Kwon KK, Park JH, Kim SJ (2002) Detection of biodegradation of pyrene by synchronous fluorometry. China Environ Sci 22:289–292

    Google Scholar 

  • Zhang H, Kallimanis A, Koukkou AI, Drainas C (2004a) Isolation and characterization of novel bacteria degrading polycyclic aromatic hydrocarbons from polluted Greek soils. Appl Microbiol Biotechnol 65:124–131

    CAS  Google Scholar 

  • Zhang W, Wang H, Zhang R, Yu XZ, Qian PY, Wong MH (2004b) Bacterial communities in PAH contaminated soils at an electronic-waste processing center in China. Ecotoxicology 19:96–104

    Google Scholar 

  • Zhong Y, Luan T, Wang X, Lan C, Tam NF (2007) Influence of growth medium on cometabolic degradation of polycyclic aromatic hydrocarbons by Sphingomonas sp. strain PheB4. Appl Microbiol Biotechnol 75(1):175–186

    CAS  Google Scholar 

  • Zhou J (2003) Microarrays for bacterial detection and microbial community analysis. Curr Opin Microbiol 6:288–294

    CAS  Google Scholar 

  • Zhou HW, Wong AHY, Yu RMK, Park YD, Wong YS, Tam NFY (2009) Polycyclic aromatic hydrocarbon-induced structural shift of bacterial communities in mangrove sediment. Microb Ecol 58:153–160

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhawana Pathak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, S., Pathak, B. & Fulekar, M.H. Molecular approaches for biodegradation of polycyclic aromatic hydrocarbon compounds: a review. Rev Environ Sci Biotechnol 14, 241–269 (2015). https://doi.org/10.1007/s11157-014-9353-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11157-014-9353-3

Keywords

Navigation