Skip to main content
Log in

Developing new diagnostic devices for single cell cancer profiling

  • Science Career
  • Published:
Reviews in Environmental Science and Bio/Technology Aims and scope Submit manuscript

Abstract

Detection of trace numbers of cancer cells is crucial for the recovery of the patients who have undergone drastic chemo or radio therapies. Attempting to diagnose complex cancer phenotypes clinicians face multiple problems, e.g.: the heterogeneity of cancer entities, the plasticity of the genotypes and phenotypes of cancer cells, and the low number of cancer cells relative to the normal cells in post-therapy samples. These problems are approached by molecular genetics studies, molecular biomarkers, imaging and importantly, the development of new devices suited to perform accurate, high-throughput quantitative and qualitative analysis of specimens. Interdisciplinary collaborations and the fusion of basic and applied research aimed towards advancing innovation have led to valuable improvements for clinical diagnostics. This paper highlights current advances in developing microfluidic devices for single cell or small sample analysis in biomedicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  • Chen Y, Zhong JF (2008) Microfluidic devices for high-throughput gene expression profiling of single hESC-derived neural stem cells. Methods Mol Biol 438:293–303

    Article  CAS  Google Scholar 

  • Chen P, Feng X, Du W, Liu B-F (2008) Microfluidic chips for cell sorting. Front Biosci 13:2464–2483

    Article  CAS  Google Scholar 

  • Cronin M, Ross JS (2011) Comprehensive next-generation cancer genome sequencing in the era of targeted therapy and personalized oncology. Biomark Med 5:293–305

    Article  CAS  Google Scholar 

  • Dorfman KD, Chabert M, Codarbox J-H, Rousseau G, de Cremoux P, Viovy J-L (2005) Contamination-free continuous flow microfluidic polymerase chain reaction for quantitative and clinical applications. Anal Chem 77:3700–3704

    Article  CAS  Google Scholar 

  • Duesberg P, Fabarius A, Hehlmann R (2004) Aneuploidy, the primary cause of the multilateral genomic instability of neoplastic and preneoplastic cells. IUBMB Life 56:65–81

    Article  CAS  Google Scholar 

  • Fuchou Tang KLMAS (2011) Development and applications of single-cell transcriptome analysis. Nature Methods Suppl 8:S6–S11

    Google Scholar 

  • Gonzalez A, Ciobanu D, Sayers M, Sirr N, Dalton T, Davies M (2007) Gene transcript amplification from cell lysates in continuous-flow microfluidic devices. Biomed Microdevices 9:729–736

    Article  CAS  Google Scholar 

  • Gonzalez-Angulo AM, Morales-Vasquez F, Hortobagyi GN (2007) Overview of resistance to systemic therapy in patients with breast cancer. Adv Exp Med Biol 608:1–22

    Article  CAS  Google Scholar 

  • Huang Z, Huang D, Ni S, Peng Z, Sheng W, Du X (2010) Plasma microRNAs are promising novel biomarkers for early detection of colorectal cancer. Int J Cancer 127:118–126

    CAS  Google Scholar 

  • ICD-O-3 (2000) International classification of diseases for oncology. http://www.who.int/classifications/icd/adaptations/oncology/en/

  • Islam S, Kjallquist U, Moliner A, Zajac P, Fan J-B, Lonnerberg P, Linnarsson S (2011) Characterization of the single-cell transcriptional landscape by highly multiplex RNA-seq. Genome Res 21:1160–1167

    Article  CAS  Google Scholar 

  • Kraly JR, Holcomb RE, Guan Q, Henry CS (2009) Microfluidic applications in metabolomics and metabolic profiling. Anal Chim Acta 653:23–35

    Article  CAS  Google Scholar 

  • Lecault V, Vaninsberghe M, Sekulovic S, Knapp DJHF, Wohrer S, Bowden W, Viel F, McLaughlin T, Jarandehei A, Miller M, Falconnet D, White AK, Kent DG, Copley MR, Taghipour F, Eaves CJ, Humphries RK, Piret JM, Hansen CL (2011) High-throughput analysis of single hematopoietic stem cell proliferation in microfluidic cell culture arrays. Nat Methods 8:581–586

    Article  CAS  Google Scholar 

  • Luck SC, Russ AC, Botzenhardt U, Paschka P, Schlenk RF, Dohner H, Fulda S, Dohner K, Bullinger L (2011) Deregulated apoptosis signaling in core-binding factor leukemia differentiates clinically relevant, molecular marker-independent subgroups. Leukemia

  • Melin J, Quake SR (2007) Microfluidic large-scale integration: the evolution of design rules for biological automation. Annu Rev Biophys Biomol Struct 36:213–231

    Article  CAS  Google Scholar 

  • Mrózek K, Marcucci G, Paschka P, Bloomfield CD (2008) Advances in molecular genetics and treatment of core-binding factor acute myeloid leukemia. Curr Opin Oncol 20:711–718

    Article  Google Scholar 

  • Navin N, Hicks J (2011) Future medical applications of single-cell sequencing in cancer. Genome Med 3:2–12

    Article  Google Scholar 

  • Njoroge SK, Chen H-W, Witek MA, Soper SA (2011) Integrated microfluidic systems for DNA analysis. Top Curr Chem

  • Ong S-E, Zhang S, Du H, Fu Y (2008) Fundamental principles and applications of microfluidic systems. Front Biosci 13:2757–2773

    Article  CAS  Google Scholar 

  • Rockova V, Abbas S, Wouters BJ, Erpelinck CAJ, Beverloo HB, Delwel R, van Putten B, Lowenberg WLJ, Valk PJM (2011) Risk stratification of intermediate-risk acute myeloid leukemia: integrative analysis of a multitude of gene mutation and gene expression markers. Blood 118:1069–1076

    Article  CAS  Google Scholar 

  • Sachs RK, Johnsson K, Hahnfeldt P, Luo J, Chen A, Hlatky L (2011) A multicellular basis for the origination of blast crisis in chronic myeloid leukemia. Cancer Res 71:2838–2847

    Article  CAS  Google Scholar 

  • Sirr N, Ciobanu D, Grimes R, Davies M (2006) A continuous flow polymerase chain reactor for bio analysis. Proceedings of ASME ICNMM2006

  • Yan HHN, Mruk DD, Lee WM, Cheng CY (2008) Cross-talk between tight and anchoring junctions-lesson from the testis. Adv Exp Med Biol 636:234–254

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Doina Ciobanu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ciobanu, D. Developing new diagnostic devices for single cell cancer profiling. Rev Environ Sci Biotechnol 10, 183–186 (2011). https://doi.org/10.1007/s11157-011-9249-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11157-011-9249-4

Keywords

Navigation