Skip to main content

Advertisement

Log in

Diagnosis and therapeutic approach to bone health in patients with hypopituitarism

  • Published:
Reviews in Endocrine and Metabolic Disorders Aims and scope Submit manuscript

Abstract

The results of many studies in recent years indicate a significant impact of pituitary function on bone health. The proper function of the pituitary gland has a significant impact on the growth of the skeleton and the appearance of sexual dimorphism. It is also responsible for achieving peak bone mass, which protects against the development of osteoporosis and fractures later in life. It is also liable for the proper remodeling of the skeleton, which is a physiological mechanism managing the proper mechanical resistance of bones and the possibility of its regeneration after injuries. Pituitary diseases causing hypofunction and deficiency of tropic hormones, and thus deficiency of key hormones of effector organs, have a negative impact on the skeleton, resulting in reduced bone mass and susceptibility to pathological fractures. The early appearance of pituitary dysfunction, i.e. in the pre-pubertal period, is responsible for failure to achieve peak bone mass, and thus the risk of developing osteoporosis in later years. This argues for the need for a thorough assessment of patients with hypopituitarism, not only in terms of metabolic disorders, but also in terms of bone disorders. Early and properly performed treatment may prevent patients from developing the bone complications that are so common in this pathology. The aim of this review is to discuss the physiological, pathophysiological, and clinical insights of bone involvement in pituitary disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References

  1. Mazziotti G, Frara S, Giustina A. Pituitary diseases and Bone. Endocr Rev. 2018. https://doi.org/10.1210/er.2018-00005.

    Article  PubMed  Google Scholar 

  2. Cianferotti L, Cipriani C, Corbetta S, Corona G, Defeudis G, Lania AG, Messina C, Napoli N, Mazziotti G. Bone quality in endocrine diseases: determinants and clinical relevance. J Endocrinol Invest. 2023. https://doi.org/10.1007/s40618-023-02056-w.

    Article  PubMed Central  PubMed  Google Scholar 

  3. Vurallĩ D. Growth hormone deficiency in the transition period. Turkish J Endocrinol Metabolism. 2019. https://doi.org/10.25179/tjem.2019-65793.

    Article  Google Scholar 

  4. Grimberg A, Divall SA, Polychronakos C, Allen DB, Cohen LE, Quintos JB, Rossi WC, Feudtner C, Murad MH. Guidelines for growth hormone and insulin-like Growth Factor-I treatment in children and adolescents: growth hormone Deficiency, Idiopathic Short stature, and primary insulin-like Growth Factor-I Deficiency. Horm Res Paediatr. 2017. https://doi.org/10.1159/000452150.

    Article  Google Scholar 

  5. Canale D, Vignali E, Golia F, Martino E, Pinchera A, Marcocci C. Effects of hormonal replacement treatment on bone mineral density and metabolism in hypogonadal patients. Mol Cell Endocrinol. 2000. https://doi.org/10.1016/S0303-7207(99)00223-3.

    Article  PubMed  Google Scholar 

  6. Laitinen EM, Hero M, Vaaralahti K, Tommiska J, Raivio T. Bone mineral density, body composition and bone turnover in patients with congenital hypogonadotropic hypogonadism. Int J Androl. 2012. https://doi.org/10.1111/j.1365-2605.2011.01237.x.

    Article  PubMed  Google Scholar 

  7. Mazziotti G, Porcelli T, Mormando M, De Menis E, Bianchi A, Mejia C, Mancini T, De Marinis L, Giustina A. Vertebral fractures in males with prolactinoma. Endocrine. 2011. https://doi.org/10.1007/s12020-011-9462-5.

    Article  PubMed  Google Scholar 

  8. Bartl R, Dual-Energy X-R, Absorptiometry. DXA) and Other Technologies. Osteoporosis in clinical practice. Springer International Publishing; 2023. pp. 51–62.

  9. Schousboe JT, Shepherd JA, Bilezikian JP, Baim S. Executive summary of the 2013 International Society for clinical densitometry position development conference on bone densitometry. J Clin Densitometry. 2013. https://doi.org/10.1016/j.jocd.2013.08.004.

  10. Zhou H, Cooper MS, Seibel MJ. Endogenous glucocorticoids and Bone. Bone Res. 2013. https://doi.org/10.4248/BR201302001.

    Article  PubMed Central  PubMed  Google Scholar 

  11. Hardy RS, Zhou H, Seibel MJ, Cooper MS. Glucocorticoids and bone: consequences of endogenous and exogenous excess and replacement therapy. Endocr Rev. 2018. https://doi.org/10.1210/er.2018-00097.

    Article  PubMed  Google Scholar 

  12. Zhou H, Mak W, Kalak R, Street J, Fong-Yee C, Zheng Y, Dunstan CR, Seibel MJ. Glucocorticoid-dependent wnt signaling by mature osteoblasts is a key regulator of cranial skeletal development in mice. Development. 2009. https://doi.org/10.1242/dev.027706.

    Article  PubMed Central  PubMed  Google Scholar 

  13. Shepherd JA. Positions of the International Society for Clinical Densitometry and their etiology: a scoping review. J Clin Densitom. 2023. https://doi.org/10.1016/j.jocd.2023.101369. https:/doi.org/.

    Article  PubMed  Google Scholar 

  14. Baccaro LF, Conde DM, Costa-Paiva L, Pinto-Neto AM. The epidemiology and management of postmenopausal osteoporosis: a viewpoint from Brazil. Clin Interv Aging. 2015. https://doi.org/10.2147/CIA.S54614.

    Article  PubMed Central  PubMed  Google Scholar 

  15. Body JJ, Bergmann P, Boonen S, Boutsen Y, Devogelaer JP, Goemaere S, Kaufman JM, Rozenberg S, Reginster JY. Evidence-based guidelines for the pharmacological treatment of postmenopausal osteoporosis: a consensus document by the Belgian Bone Club. Osteoporos Int. 2010. https://doi.org/10.1007/s00198-010-1223-4.

    Article  PubMed Central  PubMed  Google Scholar 

  16. Dimai HP, Pietschmann P, Resch H, Preisinger E, Fahrleitner-Pammer A, Dobnig H. Klaushofer K Austrian guidance for the pharmacological treatment of osteoporosis in postmenopausal women - update 2009. Wien Med Wochenschr. 2009. https://doi.org/10.1007/s10354-009-0656-x.

    Article  PubMed  Google Scholar 

  17. Zerbini CAF, Szejnfeld VL, Abergaria BH, McCloskey EV, Johansson H, Kanis. Incidence of hip fracture in Brazil and the development of a FRAX model. Arch Osteoporos. 2015. https://doi.org/10.1007/s11657-015-0224-5.

    Article  PubMed  Google Scholar 

  18. Meeta M, Harinarayan CV, Marwah R, Sahay R, Kalra S, Babhulkar S. Clinical practice guidelines on postmenopausal osteoporosis: ∗an executive summary and recommendations-update 2019–2020. J Midlife Health. 2020. https://doi.org/10.4103/jmh.JMH_143_20.

    Article  PubMed Central  PubMed  Google Scholar 

  19. Radominski SC, Bernardo W, de Paula AP, et al. Brazilian guidelines for the diagnosis and treatment of postmenopausal osteoporosis. Revista Brasileira De Reumatologia (English Edition). 2017. https://doi.org/10.1016/j.rbre.2017.07.001.

    Article  Google Scholar 

  20. El-Hajj Fuleihan G, Chakhtoura M, Cauley JA, Chamoun N. Worldwide Fracture Prediction. J Clin Densitometry. 2017. https://doi.org/10.1016/j.jocd.2017.06.008.

    Article  Google Scholar 

  21. Silva PPB, Pereira RMR, Takayama L, Borba CG, Duarte FH, Trarbach EB, Martin RM, Bronstein MD, Tritos NA, Jallad RS. Impaired bone microarchitecture in Premenopausal Women with Acromegaly: the possible role of wnt signaling. J Clin Endocrinol Metab. 2012. https://doi.org/10.1210/clinem/dgab260.

    Article  PubMed Central  PubMed  Google Scholar 

  22. Ulivieri FM, Silva BC, Sardanelli F, Hans D, Bilezikian JP, Caudarella R. Utility of the trabecular bone score (TBS) in secondary osteoporosis. Endocrine. 2014. https://doi.org/10.1007/s12020-014-0280-4.

    Article  PubMed  Google Scholar 

  23. Claessen KMJA, Pelsma ICM, Kroon HM, van Lierop AH, Pereira AM, Biermasz NR, Appelman-Dijkstra NM. Low sclerostin levels after long-term remission of acromegaly. Endocrine. 2022. https://doi.org/10.1007/s12020-021-02850-7.

    Article  PubMed Central  PubMed  Google Scholar 

  24. Bolanowski M, Wielgus W, Milewicz A, Marciniak R. Axial bone mineral density in patients with acromegaly. Acad Radiol. 2000. https://doi.org/10.1016/S1076-6332(00)80573-5.

    Article  PubMed  Google Scholar 

  25. De Bakker CMJ, Tseng WJ, Li Y, Zhao H, Liu XS. Clinical evaluation of bone strength and fracture risk. Curr Osteoporos Rep. 2017. https://doi.org/10.1007/s11914-017-0346-3.

    Article  PubMed Central  PubMed  Google Scholar 

  26. Ribeiro de Moura C, Campos Lopes S, Monteiro AM. Determinants of skeletal fragility in acromegaly: a systematic review and meta-analysis. Pituitary. 2022. https://doi.org/10.1007/s11102-022-01256-6.

    Article  PubMed  Google Scholar 

  27. Griffith JF, Genant HK. New advances in imaging osteoporosis and its complications. Endocrine. 2012. https://doi.org/10.1007/s12020-012-9691-2.

    Article  PubMed  Google Scholar 

  28. Belaya ZE, Rozhinskaya LY, Melnichenko GA, Solodovnikov AG, Dragunova NV, Iljin AV, Dzeranova LK, Dedov II. Serum extracellular secreted antagonists of the canonical Wnt/β-catenin signaling pathway in patients with Cushing’s syndrome. Osteoporos Int. 2013. https://doi.org/10.1007/s00198-013-2268-y.

    Article  PubMed  Google Scholar 

  29. Kužma M, Vaňuga P, Ságova I, Pávai D, Jackuliak P, Killinger Z, Binkley NC, Winzenrieth R, Genant HK, Payer J. Non-invasive DXA-derived bone structure assessment of acromegaly patients: a cross-sectional study. Eur J Endocrinol. 2019. https://doi.org/10.1530/EJE-18-0881.

    Article  PubMed  Google Scholar 

  30. Ueland T, Stilgren L, Bollerslev J. Bone matrix levels of dickkopf and sclerostin are positively correlated with bone mass and strength in postmenopausal osteoporosis. Int J Mol Sci. 2019. https://doi.org/10.3390/ijms20122896.

    Article  PubMed Central  PubMed  Google Scholar 

  31. Bolanowski M, Jȩdrzejuk D, Milewicz A, Arkowska A. Quantitative ultrasound of the heel and some parameters of bone turnover in patients with acromegaly. Osteoporos Int. 2002. https://doi.org/10.1007/s001980200030.

    Article  PubMed  Google Scholar 

  32. Bolanowski M, Pluskiewicz W, Adamczyk P, Daroszewski J. Quantitative ultrasound at the hand phalanges in patients with acromegaly. Ultrasound Med Biol. 2006. https://doi.org/10.1016/j.ultrasmedbio.2005.10.003.

    Article  PubMed  Google Scholar 

  33. Dincel AS, Jørgensen NR. New Emerging biomarkers for bone disease: Sclerostin and Dickkopf-1 (DKK1). Calcif Tissue Int. 2023. https://doi.org/10.1007/s00223-022-01020-9.

    Article  PubMed  Google Scholar 

  34. Di Paola M, Gatti D, Viapiana O, et al. Radiofrequency echographic multispectrometry compared with dual X-ray absorptiometry for osteoporosis diagnosis on lumbar spine and femoral neck. Osteoporos Int. 2019. https://doi.org/10.1007/s00198-018-4686-3.

    Article  PubMed  Google Scholar 

  35. Rolla M, Halupczok-Zyla J, Jawiarczyk-Przybylowska A, Bolanowski M. Bone densitometry by radiofrequency echographic multi-spectrometry (REMS) in acromegaly patients. Endokrynol Pol. 2020. https://doi.org/10.5603/EP.A2020.0056.

    Article  PubMed  Google Scholar 

  36. Uygur MM, Yazıcı DD, Buğdaycı O, Yavuz DG. Prevalence of vertebral fractures and serum sclerostin levels in acromegaly. Endocrine. 2021. https://doi.org/10.1007/s12020-021-02751-9.

    Article  PubMed  Google Scholar 

  37. Allen MR, McNerny EMB, Organ JM, Wallace JM. True gold or pyrite: a review of reference point indentation for assessing bone mechanical properties in vivo. J Bone Miner Res. 2015. https://doi.org/10.1002/jbmr.2603.

    Article  PubMed  Google Scholar 

  38. Genant HK, Jergas M, Palermo L, Nevitt M, Valentin RS, Black D, Cummings SR. Comparison of semiquantitative visual and quantitative morphometric assessment of prevalent and incident vertebral fractures in osteoporosis the study of Osteoporotic Fractures Research Group. J Bone Min Res. 1996. https://doi.org/10.1002/jbmr.5650110716.

    Article  Google Scholar 

  39. Clark EM, Carter L, Gould VC, Morrison L, Tobias JH. Vertebral fracture assessment (VFA) by lateral DXA scanning may be cost-effective when used as part of fracture liaison services or primary care screening. Osteoporos Int. 2014. https://doi.org/10.1007/s00198-013-2567-3.

    Article  PubMed  Google Scholar 

  40. Mazziotti G, Formenti AM, Adler RA, Bilezikian JP, Grossman A, Sbardella E, Minisola S, Giustina A. Glucocorticoid-induced osteoporosis: pathophysiological role of GH/IGF-I and PTH/VITAMIN D axes, treatment options and guidelines. Endocrine. 2016. https://doi.org/10.1007/s12020-016-1146-8.

    Article  PubMed  Google Scholar 

  41. Frara S, Rodriguez-Carnero G, Formenti AM, Martinez-Olmos MA, Giustina A, Casanueva FF. Pituitary Tumors Centers of Excellence. Endocrinol Metab Clin North Am. 2020. https://doi.org/10.1016/j.ecl.2020.05.010.

    Article  PubMed  Google Scholar 

  42. Fleseriu M, Auchus R, Bancos I, et al. Consensus on diagnosis and management of Cushing’s disease: a guideline update. Lancet Diabetes Endocrinol. 2021. https://doi.org/10.1016/S2213-8587(21)00235-7.

    Article  PubMed Central  PubMed  Google Scholar 

  43. Giustina A, Barkan A, Beckers A, et al. A consensus on the diagnosis and treatment of acromegaly comorbidities: an update. J Clin Endocrinol Metab. 2020. https://doi.org/10.1210/clinem/dgz096.

    Article  PubMed Central  PubMed  Google Scholar 

  44. Formenti AM, Tecilazich F, Giubbini R, Giustina A. Risk of vertebral fractures in hypoparathyroidism. Rev Endocr Metab Disord. 2019. https://doi.org/10.1007/s11154-019-09507-x.

    Article  PubMed  Google Scholar 

  45. Vasikaran S, Eastell R, Bruyère O, et al. Markers of bone turnover for the prediction of fracture risk and monitoring of osteoporosis treatment: a need for international reference standards. Osteoporos Int. 2011. https://doi.org/10.1007/s00198-010-1501-1.

    Article  PubMed  Google Scholar 

  46. Vasikaran SD, Paul Chubb SA. The use of biochemical markers of bone turnover in the clinical management of primary and secondary osteoporosis. Endocrine. 2016. https://doi.org/10.1007/s12020-016-0900-2.

    Article  PubMed  Google Scholar 

  47. Curtò L, Trimarchi F. Hypopituitarism in the elderly: a narrative review on clinical management of hypothalamic–pituitary–gonadal, hypothalamic–pituitary–thyroid and hypothalamic–pituitary–adrenal axes dysfunction. J Endocrinol Invest. 2016. https://doi.org/10.1007/s40618-016-0487-8.

    Article  PubMed  Google Scholar 

  48. Heilmeier U, Hackl M, Schroeder F, et al. Circulating serum micrornas including senescent mir-31-5p are associated with incident fragility fractures in older postmenopausal women with type 2 diabetes mellitus. Bone. 2022. https://doi.org/10.1016/j.bone.2021.116308.

    Article  PubMed  Google Scholar 

  49. Donati S, Ciuffi S, Palmini G, Brandi ML. Circulating mirnas: a new opportunity in bone fragility. Biomolecules. 2020. https://doi.org/10.3390/biom10060927.

    Article  PubMed Central  PubMed  Google Scholar 

  50. Yang Y, Yujiao W, Fang W, Linhui Y, Ziqi G, Zhichen W, Zirui W, Shengwang W. The roles of mirna, lncrna and circrna in the development of osteoporosis. Biol Res. 2020. https://doi.org/10.1186/s40659-020-00309-z.

    Article  PubMed Central  PubMed  Google Scholar 

  51. Kramer I, Halleux C, Keller H, Pegurri M, Gooi JH, Weber PB, Feng JQ, Bonewald LF, Kneissel M. Osteocyte Wnt/β-Catenin signaling is required for normal bone homeostasis. Mol Cell Biol. 2010. https://doi.org/10.1128/mcb.01428-09.

    Article  PubMed Central  PubMed  Google Scholar 

  52. Yang TL, Shen H, Liu A, Dong SS, Zhang L, Deng FY, Zhao Q, Deng HW. A road map for understanding molecular and genetic determinants of osteoporosis. Nat Rev Endocrinol. 2020. https://doi.org/10.1038/s41574-019-0282-7.

    Article  PubMed  Google Scholar 

  53. Trajanoska K, Rivadeneira F. The genetic architecture of osteoporosis and fracture risk. Bone. 2019. https://doi.org/10.1016/j.bone.2019.04.005.

    Article  PubMed  Google Scholar 

  54. De Martinis M, Ginaldi L, Allegra A, Sirufo MM, Pioggia G, Tonacci A, Gangemi S. The osteoporosis/microbiota linkage: the role of mirna. Int J Mol Sci. 2020. https://doi.org/10.3390/ijms21238887.

    Article  PubMed Central  PubMed  Google Scholar 

  55. Smets J, Shevroja E, Hügle T, Leslie WD, Hans D. Machine Learning Solutions for Osteoporosis—A review. J Bone Miner Res. 2021. https://doi.org/10.1002/jbmr.4292.

    Article  PubMed  Google Scholar 

  56. Yabu A, Hoshino M, Tabuchi H, et al. Using artificial intelligence to diagnose fresh osteoporotic vertebral fractures on magnetic resonance images. Spine J. 2021. https://doi.org/10.1016/j.spinee.2021.03.006.

    Article  PubMed  Google Scholar 

  57. Murata K, Endo K, Aihara T, et al. Artificial intelligence for the detection of vertebral fractures on plain spinal radiography. Sci Rep. 2020. https://doi.org/10.1038/s41598-020-76866-w.

    Article  PubMed Central  PubMed  Google Scholar 

  58. Giustina A, Mazziotti G, Canalis E. Growth hormone, insulin-like growth factors, and the skeleton. Endocr Rev. 2008. https://doi.org/10.1210/er.2007-0036.

    Article  PubMed Central  PubMed  Google Scholar 

  59. Mazziotti G, Bianchi A, Bonadonna S, Cimino V, Patelli I, Fusco A, Pontecorvi A, De Marinis L, Giustina A. Prevalence of vertebral fractures in men with acromegaly. J Clin Endocrinol Metab. 2008. https://doi.org/10.1210/jc.2008-0791.

    Article  PubMed  Google Scholar 

  60. Kužma M, Killinger Z, Jackuliak P, Vaòuga P, Hans D, Binkley N, Payer J. Pathophysiology of growth hormone secretion disorders and their impact on bone microstructure as measured by trabecular bone score. Physiol Res. 2019. https://doi.org/10.33549/physiolres.934303.

    Article  PubMed  Google Scholar 

  61. Wydra A, Czajka-Oraniec I, Wydra J, Zgliczyński W. The influence of growth hormone deficiency on bone health and metabolism. Rheumatology.2023; https://doi.org/10.5114/reum/170244.

  62. Rubin J, Ackert-Bicknell CL, Zhu L, Fan X, Murphy TC, Nanes MS, Marcus R, Holloway L, Beamer WG, Rosen CJ. IGF-I regulates osteoprotegerin (OPG) and receptor activator of nuclear factor-κb ligand in vitro and OPG in vivo. J Clin Endocrinol Metab. 2002. https://doi.org/10.1210/jc.2002-020656.

    Article  PubMed  Google Scholar 

  63. Mrak E, Villa I, Lanzi R, Losa M, Guidobono F, Rubinacci A. Growth hormone stimulates osteoprotegerin expression and secretion in human osteoblast-like cells. J Endocrinol. 2007. https://doi.org/10.1677/joe.1.07073.

    Article  PubMed  Google Scholar 

  64. Ahmad AM, Hopkins MT, Fraser WD, Ooi CG, Durham BH, Vora JP. Parathyroid hormone secretory pattern, circulating activity, and effect on bone turnover in adult growth hormone deficiency. Bone. 2003. https://doi.org/10.1016/S8756-3282(02)00952-3.

    Article  PubMed  Google Scholar 

  65. Ledger GA, Burritt MF, Kao PC, O’Fallon WM, Riggs BL, Khosla S. Role of parathyroid hormone in mediating nocturnal and age-related increases in bone resorption. J Clin Endocrinol Metab. 1995. https://doi.org/10.1210/jcem.80.11.7593443.

    Article  PubMed  Google Scholar 

  66. Lindahl A, Isgaard J, Nilsson A, Isaksson OGP. Growth hormone potentiates colony formation of epiphyseal chondrocytes in suspension culture. Endocrinology. 1986. https://doi.org/10.1210/endo-118-5-1843.

    Article  PubMed  Google Scholar 

  67. Ohlsson C, Nilsson A, Isaksson O, Lindahl A. Growth hormone induces multiplication of the slowly cycling germinal cells of the rat tibial growth plate. Proc Natl Acad Sci U S A. 1992. https://doi.org/10.1073/pnas.89.20.9826.

    Article  PubMed Central  PubMed  Google Scholar 

  68. Delany AM, Durant D, Canalis E. Glucocorticoid suppression of IGF I transcription in osteoblasts. Mol Endocrinol. 2001. https://doi.org/10.1210/mend.15.10.0704.

    Article  PubMed  Google Scholar 

  69. Kassem M, Okazaki R, Harris SA, Spelsberg TC, Conover CA, Riggs BL. Estrogen effects on insulin-like growth factor gene expression in a human osteoblastic cell line with high levels of estrogen receptor. Calcif Tissue Int. 1998. https://doi.org/10.1007/s002239900395.

    Article  PubMed  Google Scholar 

  70. Yakar S, Werner H, Rosen CJ. 40 years of IGF1: insulin-like growth factors: actions on the skeleton. J Mol Endocrinol. 2018. https://doi.org/10.1530/JME-17-0298.

    Article  PubMed Central  PubMed  Google Scholar 

  71. Huang BK, Golden LA, Tarjan G, Madison LD, Stern PH. Insulin-like growth factor I production is essential for anabolic effects of thyroid hormone in osteoblasts. J Bone Miner Res. 2000. https://doi.org/10.1359/jbmr.2000.15.2.188.

    Article  PubMed  Google Scholar 

  72. Lakatos P, Caplice MD, Khanna V, Stern PH. Thyroid hormones increase insulin-like growth factor I content in the medium of rat bone tissue. J Bone Miner Res. 1993. https://doi.org/10.1002/jbmr.5650081210.

    Article  PubMed  Google Scholar 

  73. Baroncelli GI, Bertelloni S, Ceccarelli C, Saggese G. Measurement of volumetric bone mineral density accurately determines degree of lumbar undermineralization in children with growth hormone deficiency. J Clin Endocrinol Metab. 1998. https://doi.org/10.1210/jcem.83.9.5072.

    Article  PubMed  Google Scholar 

  74. Olney RC. Regulation of bone mass by growth hormone. Med Pediatr Oncol. 2003. https://doi.org/10.1002/mpo.10342.

    Article  PubMed  Google Scholar 

  75. Högler W, Shaw N. Childhood growth hormone deficiency, bone density, structures and fractures: scrutinizing the evidence. Clin Endocrinol (Oxf). 2010. https://doi.org/10.1111/j.1365-2265.2009.03686.x.

    Article  PubMed  Google Scholar 

  76. Bolanowski M, Halupczok J, Jawiarczyk-Przybyłowska A. Pituitary disorders and osteoporosis. Int J Endocrinol. 2015. https://doi.org/10.1155/2015/206853.

    Article  PubMed Central  PubMed  Google Scholar 

  77. Mazziotti G, Bianchi A, Bonadonna S, Nuzzo M, Cimino V, Fusco A, De Marinis L, Giustina A. Increased prevalence of radiological spinal deformities in adult patients with GH deficiency: influence of GH replacement therapy. J Bone Miner Res. 2006. https://doi.org/10.1359/jbmr.060112.

    Article  PubMed  Google Scholar 

  78. Lewiński A, Smyczyńska J, Stawerska R, et al. National program of severe growth hormone Deficiency treatment in adults and adolescents after completion of growth promoting therapy. Endokrynol Pol. 2018. https://doi.org/10.5603/EP.a2018.0054.

    Article  PubMed  Google Scholar 

  79. Lissett CA, Shalet SM. Effects of growth hormone on bone and muscle. Growth Hormone IGF Res. 2000. https://doi.org/10.1016/S1096-6374(00)80018-0.

    Article  Google Scholar 

  80. Wüster C, Abs R, Bengtsson BÅ, Bennmarker H, Feldt-Rasmussen U, Hernberg-Ståhl E, Monson JP, Westberg B, Wilton P. The influence of growth hormone deficiency, growth hormone replacement therapy, and other aspects of hypopituitarism on fracture rate and bone mineral density. J Bone Miner Res. 2001. https://doi.org/10.1359/jbmr.2001.16.2.398.

    Article  PubMed  Google Scholar 

  81. Mazziotti G, Biagioli E, Maffezzoni F, Spinello M, Serra V, Maroldi R, Floriani I, Giustina A. Bone turnover, bone mineral density, and fracture risk in acromegaly: a meta-analysis. J Clin Endocrinol Metab. 2015. https://doi.org/10.1210/jc.2014-2937.

    Article  PubMed  Google Scholar 

  82. Götherström G, Elbornsson M, Stibrant-Sunnerhagen K, Bengtsson BÅ, Johannsson G, Svensson J. Muscle strength in elderly adults with GH deficiency after 10 years of GH replacement. Eur J Endocrinol. 2010. https://doi.org/10.1530/EJE-10-0009.

    Article  PubMed  Google Scholar 

  83. Yuen KCJ, Alter CA, Miller BS, Gannon AW, Tritos NA, Samson SL, Dobri G, Kurtz K, Strobl F, Kelepouris N. Adult growth hormone deficiency: optimizing transition of care from pediatric to adult services. Growth Hormone IGF Res. 2021. https://doi.org/10.1016/j.ghir.2020.101375.

    Article  Google Scholar 

  84. Underwood LE, Attie KM, Baptista J. Growth hormone (GH) dose-response in young adults with childhood-onset GH Deficiency: a Two-Year, Multicenter, Multiple-Dose, placebo-controlled study. J Clin Endocrinol Metab. 2003. https://doi.org/10.1210/jc.2003-030204.

    Article  PubMed  Google Scholar 

  85. Conway GS, Szarras-Czapnik M, Racz K, Keller A, Chanson P, Tauber M, Zacharin M. Treatment for 24 months with recombinant human GH has a beneficial effect on bone mineral density in young adults with childhood-onset GH deficiency. Eur J Endocrinol. 2009. https://doi.org/10.1530/EJE-08-0436.

    Article  PubMed  Google Scholar 

  86. Biller BMK, Sesmilo G, Baum HBA, Hayden D, Schoenfeld D, Klibanski A. Withdrawal of long-term physiological growth hormone (GH) Administration: Differential effects on bone density and body composition in men with adult-onset GH Deficiency*. J Clin Endocrinol Metab. 2000. https://doi.org/10.1210/jcem.85.3.6474.

    Article  PubMed  Google Scholar 

  87. Appelman-Dijkstra NM, Claessen KMJA, Hamdy NAT, Pereira AM, Biermasz NR. Effects of up to 15 years of recombinant human GH (rhGH) replacement on bone metabolism in adults with growth hormone Deficiency (GHD): the Leiden Cohort Study. Clin Endocrinol (Oxf). 2014. https://doi.org/10.1111/cen.12493.

    Article  PubMed  Google Scholar 

  88. Matkovic V, Jelic T, Wardlaw GM, Ilich JZ, Goel PK, Wright JK, Andon MB, Smith KT, Heaney RP. Timing of peak bone mass in caucasian females and its implication for the prevention of osteoporosis. Inference from a cross-sectional model. J Clin Invest. 1994. https://doi.org/10.1172/jci117034.

    Article  PubMed Central  PubMed  Google Scholar 

  89. Rosen T, Hansson T, Granhed H, Szucs J, Bengtsson BA. Reduced bone mineral content in adult patients with growth hormone deficiency. Acta Endocrinol (Copenh). 1993. https://doi.org/10.1530/acta.0.1290201.

    Article  PubMed  Google Scholar 

  90. Verhelst J, Abs R. Long-term growth hormone replacement therapy in hypopituitary adults. Drugs. 2002. https://doi.org/10.2165/00003495-200262160-00006.

    Article  PubMed  Google Scholar 

  91. Appelman-Dijkstra NM, Claessen KMJA, Roelfsema F, Pereira AM, Biermasz NR. Long-term effects of recombinant human GH replacement in adults with GH deficiency: a systematic review. Eur J Endocrinol. 2013. https://doi.org/10.1530/EJE-12-1088.

    Article  PubMed  Google Scholar 

  92. Clanget C, Seck T, Hinke V, Wüster C, Ziegler R, Pfeilschifter J. Effects of 6 years of growth hormone (GH) treatment on bone mineral density in GH-deficient adults. Clin Endocrinol (Oxf). 2001. https://doi.org/10.1046/j.1365-2265.2001.01284.x.

    Article  PubMed  Google Scholar 

  93. Drake WM, Rodríguez-Arnao J, Weaver JU, James IT, Coyte D, Spector TD, Besser GM, Monson JP. The influence of gender on the short and long-term effects of growth hormone replacement on bone metabolism and bone mineral density in hypopituitary adults: a 5-year study. Clin Endocrinol (Oxf). 2001. https://doi.org/10.1046/j.1365-2265.2001.01246.x.

    Article  PubMed  Google Scholar 

  94. Götherström G, Svensson J, Koranyi J, Alpsten M, Bosæus I, Bengtsson BÅ, Johannsson G. A prospective study of 5 years of GH replacement therapy in GH-deficient adults: sustained effects on body composition, bone mass, and metabolic indices. J Clin Endocrinol Metab. 2001. https://doi.org/10.1210/jc.86.10.4657.

    Article  PubMed  Google Scholar 

  95. Götherström G, Bengtsson BÅ, Bossæus I, Johansson G, Svensson J. Ten-year GH replacement increase bone mineral density in hypopituitary patients with adult onset GH deficiency. Eur J Endocrinol. 2007. https://doi.org/10.1530/eje.1.02317.

    Article  PubMed  Google Scholar 

  96. Elbornsson M, Götherström G, Bosæus I, Bengtsson BÅ, Johannsson G, Svensson J. Fifteen years of GH replacement increases bone mineral density in hypopituitary patients with adult-onset GH deficiency. Eur J Endocrinol. 2012. https://doi.org/10.1530/EJE-11-1072.

    Article  PubMed Central  PubMed  Google Scholar 

  97. Kužma M, Kužmová Z, Zelinková Z, Killinger Z, Vaňuga P, Lazurová I, Tomková S, Payer J. Impact of the growth hormone replacement on bone status in growth hormone deficient adults. Growth Hormone IGF Res. 2014. https://doi.org/10.1016/j.ghir.2013.12.001.

    Article  Google Scholar 

  98. Vaňuga P, Kužma M, Stojkovičová D, Smaha J, Jackuliak P, Killinger Z, Payer J. The Long-Term effects of growth hormone replacement on bone Mineral density and trabecular bone score: results of the 10-Year prospective follow-up. Physiol Res. 2021. https://doi.org/10.33549/PHYSIOLRES.934775.

    Article  PubMed Central  PubMed  Google Scholar 

  99. Varlamov E, mccartney S, Fleseriu M. Growth hormone deficiency and replacement effect on adult bone mass: a clinical update. Curr Opin Endocr Metab Res. 2018. https://doi.org/10.1016/j.coemr.2017.10.001.

    Article  Google Scholar 

  100. Yuen KCJ, Biller BMK, Radovick S, Carmichael JD, Jasim S, Pantalone KM, Hoffman AR. American Association of Clinical endocrinologists and American College of Endocrinology guidelines for management of growth hormone deficiency in adults and patients transitioning from pediatric to adult care. Endocr Pract. 2019. https://doi.org/10.4158/GL-2019-0405.

    Article  PubMed  Google Scholar 

  101. Molitch ME, Clemmons DR, Malozowski S, Merriam GR, Vance ML. Evaluation and treatment of adult growth hormone deficiency: an endocrine society clinical practice guideline. J Clin Endocrinol Metab. 2011. https://doi.org/10.1210/jc.2011-0179.

    Article  PubMed Central  PubMed  Google Scholar 

  102. Lissett CA, Murray RD, Shalet SM. Timing of onset of growth hormone deficiency is a major influence on insulin-like growth factor I status in adult life. Clin Endocrinol (Oxf). 2001. https://doi.org/10.1046/j.1365-2265.2002.01556.x.

    Article  Google Scholar 

  103. Johansson AG, Burman P, Westermark K, Ljunghall S. The bone mineral density in acquired growth hormone deficiency correlates with circulating levels of insulin-like growth factor I. J Intern Med. 1992. https://doi.org/10.1111/j.1365-2796.1992.tb00613.x.

    Article  PubMed  Google Scholar 

  104. Toogood AA, Adams JE, O’Neill PA, Shalet SM. Elderly patients with adult-onset growth hormone Deficiency are not osteopenic. J Clin Endocrinol Metab. 1997. https://doi.org/10.1210/jcem.82.5.3932.

    Article  PubMed  Google Scholar 

  105. Murray RD, Columb B, Adams JE, Shalet SM. Low bone mass is an infrequent feature of the adult growth hormone deficiency syndrome in middle-age adults and the elderly. J Clin Endocrinol Metab. 2004. https://doi.org/10.1210/jc.2003-030685.

    Article  PubMed  Google Scholar 

  106. Hoffman AR, Kuntze JE, Baptista J, et al. Growth hormone (GH) replacement therapy in adult-onset GH Deficiency: effects on Body Composition in men and women in a Double-Blind, randomized, placebo-controlled trial. J Clin Endocrinol Metab. 2004. https://doi.org/10.1210/jc.2003-030346.

    Article  PubMed  Google Scholar 

  107. Arwert LI, Roos JC, Lips P, Twisk JWR, Manoliu RA, Drent ML. Effects of 10 years of growth hormone (GH) replacement therapy in adult GH-deficient men. Clin Endocrinol (Oxf). 2005. https://doi.org/10.1111/j.1365-2265.2005.02343.x.

    Article  PubMed  Google Scholar 

  108. Johannsson G, Rosén T, Bosaeus I, Sjöström L, Bengtsson BA. Two years of growth hormone (GH) treatment increases bone mineral content and density in hypopituitary patients with adult-onset GH deficiency. J Clin Endocrinol Metab. 1996. https://doi.org/10.1210/jcem.81.8.8768843.

    Article  PubMed  Google Scholar 

  109. Beshyah SA, Freemantle C, Thomas E, Rutherford O, Page B, Murphy M, Johnston DG. Abnormal body composition and reduced bone mass in growth hormone deficient hypopituitary adults. Clin Endocrinol (Oxf). 1995. https://doi.org/10.1111/j.1365-2265.1995.tb01860.x.

    Article  PubMed  Google Scholar 

  110. Holmes SJ, Economou G, Whitehouse RW, Adams JE, Shalet SM. Reduced bone mineral density in patients with adult-onset growth hormone deficiency. J Clin Endocrinol Metab. 1994. https://doi.org/10.1210/jcem.78.3.8126140.

    Article  PubMed  Google Scholar 

  111. Radovick S, Divall S. Approach to the patient: Approach to the growth hormone-deficient child during transition to adulthood. J Clin Endocrinol Metab. 2007. https://doi.org/10.1210/jc.2007-0167.

    Article  PubMed  Google Scholar 

  112. Mauras N, Pescovitz OH, Allada V, Messig M, Wajnrajch MP, Lippe B. Limited efficacy of growth hormone (GH) during transition of GH-deficient patients from adolescence to adulthood: a phase III multicenter, double-blind, randomized two-year trial. J Clin Endocrinol Metab. 2005. https://doi.org/10.1210/jc.2005-0208.

    Article  PubMed  Google Scholar 

  113. Doga M, Bonadonna S, Gola M, Mazziotti G, Giustina A. Growth hormone deficiency in the adult. Pituitary. 2006. https://doi.org/10.1007/s11102-006-0410-y.

    Article  PubMed  Google Scholar 

  114. Kaufman JM, Taelman P, Vermeulen A, Vandeweghe M. Bone mineral status in growth hormone-deficient males with isolated and multiple pituitary deficiencies of childhood onset. J Clin Endocrinol Metab. 1992. https://doi.org/10.1210/jcem.74.1.1727808.

    Article  PubMed  Google Scholar 

  115. Barake M, Klibanski A, Tritos NA. Effects of recombinant human growth hormone therapy on bone mineral density in adults with growth hormone deficiency: a meta-analysis. J Clin Endocrinol Metab. 2014. https://doi.org/10.1210/jc.2013-3921.

    Article  PubMed  Google Scholar 

  116. Jørgensen AP, Fougner KJ, Ueland T, Gudmundsen O, Burman P, Schreiner T, Bollerslev J. Favorable long-term effects of growth hormone replacement therapy on quality of life, bone metabolism, body composition and lipid levels in patients with adult-onset growth hormone deficiency. Growth Hormone IGF Res. 2011. https://doi.org/10.1016/j.ghir.2011.01.001.

    Article  Google Scholar 

  117. Rota F, Savanelli MC, Tauchmanova L, Savastano S, Lombardi G, Colao A, Di Somma C. Bone density and turnover in young adult patients with growth hormone deficiency after 2-year growth hormone replacement according with gender. J Endocrinol Invest. 2008. https://doi.org/10.1007/bf03345574.

    Article  PubMed  Google Scholar 

  118. Rossini A, Lanzi R, Losa M, Sirtori M, Gatti E, Madaschi S, Molinari C, Villa I, Scavini M, Rubinacci A. Predictors of bone responsiveness to growth hormone (GH) replacement in adult GH-deficient patients. Calcif Tissue Int. 2011. https://doi.org/10.1007/s00223-010-9459-8.

    Article  PubMed  Google Scholar 

  119. Leung KC, Johannsson G, Leong GM, Ho KKY. Estrogen regulation of growth hormone action. Endocr Rev. 2004. https://doi.org/10.1210/er.2003-0035.

    Article  PubMed  Google Scholar 

  120. Wolthers T, Hoffman DM, Nugent AG, Duncan MW, Umpleby M, Ho KKY. Oral estrogen antagonizes the metabolic actions of growth hormone in growth hormone-deficient women. Am J Physiol Endocrinol Metab. 2001; https://doi.org/10.1152/ajpendo.2001.281.6.E1191. PMID: 11701433.

  121. Birzniece V, Ho KKY. Sex steroids and the GH axis: implications for the management of hypopituitarism. Best Pract Res Clin Endocrinol Metab. 2017. https://doi.org/10.1016/j.beem.2017.03.003.

    Article  PubMed  Google Scholar 

  122. Shoung N, Ho KKY. Managing Estrogen Therapy in the Pituitary patient. J Endocr Soc. 2023. https://doi.org/10.1210/jendso/bvad051.

    Article  PubMed Central  PubMed  Google Scholar 

  123. Biermasz NR, Hamdy NAT, Janssen YJH, Roelfsema F. Additional beneficial effects of alendronate in growth hormone (GH)-deficient adults with osteoporosis receiving long-term recombinant human GH replacement therapy: a randomized controlled trial. J Clin Endocrinol Metab. 2001. https://doi.org/10.1210/jcem.86.7.7669.

    Article  PubMed  Google Scholar 

  124. Biermasz NR, Hamdy NAT, Pereira AM, Romijn JA, Roelfsema F. Long-term skeletal effects of recombinant human growth hormone (rhgh) alone and rhgh combined with alendronate in GH-deficient adults: a seven-year follow-up study. Clin Endocrinol (Oxf). 2004. https://doi.org/10.1111/j.1365-2265.2004.02021.x.

    Article  PubMed  Google Scholar 

  125. Ho KKY. Consensus guidelines for the diagnosis and treatment of adults with GH deficiency II: a statement of the GH Research Society in association with the European Society for Pediatric Endocrinology, Lawson Wilkins Society, European Society of Endocrinology, Japan Endocrine Society, and Endocrine Society of Australia. Eur J Endocrinol. 2007. https://doi.org/10.1530/EJE-07-0631.

    Article  PubMed  Google Scholar 

  126. Fleseriu M, Hashim IA, Karavitaki N, Melmed S, Murad MH, Salvatori R, Samuels MH. Hormonal replacement in hypopituitarism in adults: an endocrine society clinical practice guideline. J Clin Endocrinol Metab. 2016. https://doi.org/10.1210/jc.2016-2118.

    Article  PubMed  Google Scholar 

  127. Baxter-Jones ADG, Faulkner RA, Forwood MR, Mirwald RL, Bailey DA. Bone mineral accrual from 8 to 30 years of age: an estimation of peak bone mass. J Bone Min Res. 2011. https://doi.org/10.1002/jbmr.412.

    Article  Google Scholar 

  128. Saggese G, Baroncelli GI, Bertelloni S. Puberty and bone development. Best Pract Res Clin Endocrinol Metab. 2002. https://doi.org/10.1053/beem.2001.0180.

    Article  PubMed  Google Scholar 

  129. Seeman E. Pathogenesis of bone fragility in women and men. Lancet. 2002. https://doi.org/10.1016/S0140-6736(02)08706-8.

    Article  PubMed  Google Scholar 

  130. Ciancia S, Dubois V, Cools M. Impact of gender-affirming treatment on bone health in transgender and gender diverse youth. Endocr Connect. 2022. https://doi.org/10.1530/EC-22-0280.

    Article  PubMed Central  PubMed  Google Scholar 

  131. Banica T, Vandewalle S, Zmierczak HG, Goemaere S, De Buyser S, Fiers T, Kaufman JM, De Schepper J, Lapauw B. The relationship between circulating hormone levels, bone turnover markers and skeletal development in healthy boys differs according to maturation stage. Bone. 2002. https://doi.org/10.1016/j.bone.2022.116368.

    Article  Google Scholar 

  132. Almeida M, Laurent MR, Dubois V, Claessens F, O’Brien CA, Bouillon R, Vanderschueren D, Manolagas SC. Estrogens and androgens in skeletal physiology and pathophysiology. Physiol Rev. 2017. https://doi.org/10.1152/physrev.00033.2015.

    Article  PubMed  Google Scholar 

  133. Laurent M, Antonio L, Sinnesael M, Dubois V, Gielen E, Classens F, Vanderschueren D. Androgens and estrogens in skeletal sexual dimorphism. Asian J Androl. 2014. https://doi.org/10.4103/1008-682X.122356.

    Article  PubMed Central  PubMed  Google Scholar 

  134. Börjesson AE, Lagerquist MK, Liu C, et al. The role of estrogen receptor α in growth plate cartilage for longitudinal bone growth. J Bone Miner Res. 2010. https://doi.org/10.1002/jbmr.156.

    Article  PubMed  Google Scholar 

  135. Kim NR, Jardí F, Khalil R, et al. Estrogen receptor alpha signaling in extrahypothalamic neurons during late puberty decreases bone size and strength in female but not in male mice. FASEB J. 2020. https://doi.org/10.1096/fj.202000272R.

    Article  PubMed  Google Scholar 

  136. Bertelloni S, Baroncelli GI, Federico G, Cappa M, Lala R, Saggese G. Altered bone mineral density in patients with complete androgen insensitivity syndrome. Horm Res. 1998. https://doi.org/10.1159/000023296.

    Article  PubMed  Google Scholar 

  137. Zachmann M, Prader A, Sobel EH, Crigler JF, Ritzén EM, Atarés M, Ferrandez A. Pubertal growth in patients with androgen insensitivity: indirect evidence for the importance of estrogens in pubertal growth of girls. J Pediatr. 1986. https://doi.org/10.1016/S0022-3476(86)81043-5.

    Article  PubMed  Google Scholar 

  138. Vandewalle S, Taes Y, Fiers T, Toye K, Van Caenegem E, Roggen I, De Schepper J, Kaufman JM. Associations of sex steroids with bone maturation, bone mineral density, bone geometry, and body composition: a cross-sectional study in healthy male adolescents. J Clin Endocrinol Metab. 2014. https://doi.org/10.1210/jc.2013-3887. Epub 2014 Mar 26. PMID: 24670081.

    Article  PubMed  Google Scholar 

  139. Finkelstein JS, Klibanski A, Neer RM. A longitudinal evaluation of bone mineral density in adult men with histories of delayed puberty. J Clin Endocrinol Metab. 1996. https://doi.org/10.1210/jc.81.3.1152.

    Article  PubMed  Google Scholar 

  140. Yap F, Högler W, Briody J, Moore B, Howman-Giles R, Cowell CT. The skeletal phenotype of men with previous constitutional delay of puberty. J Clin Endocrinol Metab. 2004. https://doi.org/10.1210/jc.2004-0046.

    Article  PubMed  Google Scholar 

  141. Hergenroeder AC. Bone mineralization, hypothalamic amenorrhea, and sex steroid therapy in female adolescents and young adults. J Pediatr. 1995. https://doi.org/10.1016/S0022-3476(95)70393-4.

    Article  PubMed  Google Scholar 

  142. Gilsanz V, Chalfant J, Kalkwarf H, Zemel B, Lappe J, Oberfield S, Shepherd J, Wren T, Winer K. Age at onset of puberty predicts bone mass in young adulthood. J Pediatr. 2011. https://doi.org/10.1016/j.jpeds.2010.06.054.

    Article  PubMed Central  PubMed  Google Scholar 

  143. Finkelstein JS, Lee H, Leder BZ, et al. Gonadal steroid-dependent effects on bone turnover and bone mineral density in men. J Clin Invest. 2016. https://doi.org/10.1172/JCI84137.

    Article  PubMed Central  PubMed  Google Scholar 

  144. Ucer S, Iyer S, Bartell SM, et al. The effects of androgens on murine cortical bone do not require AR or erα signaling in Osteoblasts and osteoclasts. J Bone Min Res. 2015. https://doi.org/10.1002/jbmr.2485.

    Article  Google Scholar 

  145. Venken K, De Gendt K, Boonen S, Ophoff J, Bouillon R, Swinnen JV, Verhoeven G, Vanderschueren D. Relative impact of androgen and estrogen receptor activation in the effects of androgens on trabecular and cortical bone in growing male mice: a study in the androgen receptor knockout mouse model. J Bone Min Res. 2006. https://doi.org/10.1359/jbmr.060103.

    Article  Google Scholar 

  146. Kodama I, Niida S, Sanada M, Yoshiko Y, Tsuda M, Maeda N, Ohama K. Estrogen regulates the production of VEGF for osteoclast formation and activity in op/op mice. J Bone Min Res. 2004. https://doi.org/10.1359/JBMR.0301229.

    Article  Google Scholar 

  147. Boyce BF, Xing L. Biology of RANK, RANKL, and osteoprotegerin. Arthritis Res Ther. 2007. https://doi.org/10.1186/ar2165.

    Article  PubMed Central  PubMed  Google Scholar 

  148. Ortona E, Pagano MT, Capossela L, Malorni W. The Role of Sex Differences in Bone Health and Healing. Biology (Basel). 2023; https://doi.org/10.3390/biology12070993.

  149. Wang J, Stern PH. Sex-specific effects of estrogen and androgen on gene expression in human monocyte-derived osteoclasts. J Cell Biochem. 2011. https://doi.org/10.1002/jcb.23297.

    Article  PubMed Central  PubMed  Google Scholar 

  150. Chen Q, Kaji H, Kanatani M, Sugimoto T, Chihara K. Testosterone increases osteoprotegerin mrna expression in mouse osteoblast cells. Horm Metab Res. 2004. https://doi.org/10.1055/s-2004-826013.

    Article  PubMed  Google Scholar 

  151. Gori F, Hofbauer LC, Conover CA, Khosla S. Effects of androgens on the insulin-like growth factor system in an androgen-responsive human osteoblastic cell line. Endocrinology. 1999. https://doi.org/10.1210/endo.140.12.7213.

    Article  PubMed  Google Scholar 

  152. Hawkes CP, Grimberg A. Insulin-like growth factor-I is a marker for the nutritional state. Pediatr Endocrinol Reviews. 2015;13(2):499–511.

    Google Scholar 

  153. Sanchez-Cardenas C, Fontanaud P, He Z, et al. Pituitary growth hormone network responses are sexually dimorphic and regulated by gonadal steroids in adulthood. Proc Natl Acad Sci U S A. 2010. https://doi.org/10.1073/pnas.1010849107.

    Article  PubMed Central  PubMed  Google Scholar 

  154. Seriwatanachai D, Krishnamra N, Van Leeuwen JPTM. Evidence for direct effects of prolactin on human osteoblasts: inhibition of cell growth and mineralization. J Cell Biochem. 2009. https://doi.org/10.1002/jcb.22161.

    Article  PubMed  Google Scholar 

  155. Niwczyk O, Grymowicz M, Szczęsnowicz A, Hajbos M, Kostrzak A, Budzik M, Maciejewska-Jeske M, Bala G, Smolarczyk R, Męczekalski B. Bones and hormones: Interaction between hormones of the Hypothalamus, Pituitary, adipose tissue and bone. Int J Mol Sci. 2023. https://doi.org/10.3390/ijms24076840.

    Article  PubMed Central  PubMed  Google Scholar 

  156. Frara S, Chiloiro S, Porcelli T, Giampietro A, Mazziotti G, De Marinis L, Giustina A. Bone safety of dual-release hydrocortisone in patients with hypopituitarism. Endocrine. 2018. https://doi.org/10.1007/s12020-017-1512-1.

    Article  PubMed  Google Scholar 

  157. Wongdee K, Tulalamba W, Thongbunchoo J, Krishnamra N, Charoenphandhu N. Prolactin alters the mrna expression of osteoblast-derived osteoclastogenic factors in osteoblast-like UMR106 cells. Mol Cell Biochem. 2011. https://doi.org/10.1007/s11010-010-0674-4.

    Article  PubMed  Google Scholar 

  158. Coss D, Yang L, Kuo CB, Xu X, Luben RA, Walker AM. Effects of prolactin on osteoblast alkaline phosphatase and bone formation in the developing rat. Am J Physiol Endocrinol Metab. 2000. https://doi.org/10.1152/ajpendo.2000.279.6.e1216.

    Article  PubMed  Google Scholar 

  159. Naliato EC, de O, Violante AHD, Caldas D, et al. Bone density in women with prolactinoma treated with dopamine agonists. Pituitary. 2008. https://doi.org/10.1007/s11102-007-0064-4.

    Article  PubMed  Google Scholar 

  160. Di Filippo L, Formenti AM, Doga M, Pedone E, Rovere-Querini P, Giustina A. Radiological thoracic vertebral fractures are highly prevalent in COVID-19 and predict Disease outcomes. J Clin Endocrinol Metab. 2021. https://doi.org/10.1210/clinem/dgaa738.

    Article  PubMed  Google Scholar 

  161. Colao A, Di Somma C, Loche S, Di Sarno A, Klain M, Pivonello R, Pietrosante M, Salvatore M, Lombardi G. Prolactinomas in adolescents: persistent bone loss after 2 years of prolactin normalization. Clin Endocrinol (Oxf). 2000. https://doi.org/10.1046/j.1365-2265.2000.00902.x.

    Article  PubMed  Google Scholar 

  162. Soto-Pedre E, Newey PJ, Bevan JS, Leese GP. Morbidity and mortality in patients with hyperprolactinaemia: the PROLEARS study. Endocr Connect. 2017. https://doi.org/10.1530/EC-17-0171.

    Article  PubMed Central  PubMed  Google Scholar 

  163. Mazziotti G, Mancini T, Mormando M, De Menis E, Bianchi A, Doga M, Porcelli T, Vescovi PP, De Marinis L, Giustina A. High prevalence of radiological vertebral fractures in women with prolactin-secreting pituitary adenomas. Pituitary. 2011. https://doi.org/10.1007/s11102-011-0293-4.

    Article  PubMed  Google Scholar 

  164. Casanueva FF, Molitch ME, Schlechte JA, et al. Guidelines of the Pituitary Society for the diagnosis and management of prolactinomas. Clin Endocrinol (Oxf). 2006. https://doi.org/10.1111/j.1365-2265.2006.02562.x.

    Article  PubMed  Google Scholar 

  165. Shaarawy M, El-Dawakhly AS, Mosaad M, El-Sadek MM. Biomarkers of bone turnover and bone mineral density in hyperprolactinemic amenorrheic women. Clin Chem Lab Med. 1999. https://doi.org/10.1515/CCLM.1999.071.

    Article  PubMed  Google Scholar 

  166. Di Somma C, Colao A, Di Sarno A, Klain M, Landi ML, Facciolli G, Pivonello R, Panza N, Salvatore M, Lombardi G. Bone marker and bone density responses to dopamine agonist therapy in hyperprolactinemic males. J Clin Endocrinol Metab. 1998. https://doi.org/10.1210/jcem.83.3.4674.

    Article  PubMed  Google Scholar 

  167. Tritos NA, Greenspan SL, King D, Hamrahian A, Cook DM, Jönsson PJ, Wajnrajch MP, Koltowska-Häggstrom M, Biller BMK. Unreplaced sex steroid deficiency, corticotropin deficiency, and lower IGF-I are associated with lower bone mineral density in adults with growth hormone deficiency: a KIMS database analysis. J Clin Endocrinol Metab. 2011. https://doi.org/10.1210/jc.2010-2662.

    Article  PubMed Central  PubMed  Google Scholar 

  168. Mazziotti G, Bianchi A, Cimino V, Bonadonna S, Martini P, Fusco A, De Marinis L, Giustina A. Effect of gonadal status on bone mineral density and radiological spinal deformities in adult patients with growth hormone deficiency. Pituitary. 2008. https://doi.org/10.1007/s11102-007-0069-z.

    Article  PubMed  Google Scholar 

  169. Antonio L, Caerels S, Jardi F, Delaunay E, Vanderschueren D. Testosterone replacement in congenital hypogonadotropic hypogonadism maintains bone density but has only limited osteoanabolic effects. Andrology. 2019. https://doi.org/10.1111/andr.12604.

    Article  PubMed  Google Scholar 

  170. Iolascon G, Frizzi L, Bianco M, Gimigliano F, Palumbo V, Sinisi AM, Sinisi AA. Bone involvement in males with Kallmann disease. Aging Clin Exp Res. 2015. https://doi.org/10.1007/s40520-015-0421-5.

    Article  PubMed  Google Scholar 

  171. Chen JF, Lin PW, Tsai YR, Yang YC, Kang HY. Androgens and androgen receptor actions on Bone Health and Disease: from Androgen Deficiency to Androgen Therapy. Cells. 2019. https://doi.org/10.3390/cells8111318.

    Article  PubMed Central  PubMed  Google Scholar 

  172. Fink HA, Ewing SK, Ensrud KE, Barrett-Connor E, Taylor BC, Cauley JA, Orwoll ES. Association of testosterone and estradiol deficiency with osteoporosis and rapid bone loss in older men. J Clin Endocrinol Metab. 2006. https://doi.org/10.1210/jc.2006-0173.

    Article  PubMed  Google Scholar 

  173. Maione L, Colao A, Young J. Bone mineral density in older patients with never-treated congenital hypogonadotropic hypogonadism. Endocrine. 2018. https://doi.org/10.1007/s12020-017-1334-1.

    Article  PubMed  Google Scholar 

  174. Ishizaka K, Suzuki M, Kageyama Y, Kihara K, Yoshida KI. Bone mineral density in hypogonadal men remains low after long-term testosterone replacement. Asian J Androl. 2002; 117 – 21.

  175. Heaney RP, Abrams S, Dawson-Hughes B, Looker A, Marcus R, Matkovic V, Weaver C. (2000) Peak bone mass. Osteoporos Int. 2000; https://doi.org/10.1007/s001980070020. PMID: 11256898.

  176. Pedreira CC, Maya J, Misra M. Functional hypothalamic amenorrhea: impact on bone and neuropsychiatric outcomes. Front Endocrinol (Lausanne). 2022. https://doi.org/10.3389/fendo.2022.953180.

    Article  PubMed  Google Scholar 

  177. Bachrach LK, Guido D, Katzman D, Litt IF, Marcus R. Decreased bone density in adolescent girls with anorexia nervosa. Pediatrics. 1999. https://doi.org/10.1542/peds.86.3.440.

    Article  Google Scholar 

  178. Misra M, Aggarwal A, Miller KK, Almazan C, Worley M, Soyka LA, Herzog DB, Klibanski A. Effects of anorexia nervosa on clinical, hematologic, biochemical, and bone density parameters in community-dwelling adolescent girls. Pediatrics. 2004. https://doi.org/10.1542/peds.2004-0540.

    Article  PubMed  Google Scholar 

  179. Faje AT, Karim L, Taylor A, et al. Adolescent girls with anorexia nervosa have impaired cortical and trabecular microarchitecture and lower estimated bone strength at the distal radius. J Clin Endocrinol Metab. 2013. https://doi.org/10.1210/jc.2012-4153.

    Article  PubMed Central  PubMed  Google Scholar 

  180. Faje AT, Fazeli PK, Miller KK, et al. Fracture risk and areal bone mineral density in adolescent females with anorexia nervosa. Int J Eat Disord. 2014. https://doi.org/10.1002/eat.22248.

    Article  PubMed Central  PubMed  Google Scholar 

  181. Singhal V, Tulsiani S, Campoverde KJ, Mitchell DM, Slattery M, Schorr M, Miller KK, Bredella MA, Misra M, Klibanski A. Impaired bone strength estimates at the distal tibia and its determinants in adolescents with anorexia nervosa. Bone. 2018. https://doi.org/10.1016/j.bone.2017.07.009.

    Article  PubMed Central  PubMed  Google Scholar 

  182. Singhal V, Ackerman KE, Bose A, Flores LPT, Lee H, Misra M. Impact of route of estrogen administration on bone turnover markers in oligoamenorrheic athletes and its mediators. J Clin Endocrinol Metab. 2019. https://doi.org/10.1210/jc.2018-02143.

    Article  PubMed Central  PubMed  Google Scholar 

  183. Christo K, Prabhakaran R, Lamparello B, Cord J, Miller KK, Goldstein MA, Gupta N, Herzog DB, Klibanski A, Misra M. Bone metabolism in adolescent athletes with amenorrhea, athletes with eumenorrhea, and control subjects. Pediatrics. 2008. https://doi.org/10.1542/peds.2007-2392.

    Article  PubMed  Google Scholar 

  184. Ackerman KE, Sokoloff NC, De Nardo Maffazioli G, Clarke HM, Lee H, Misra M. Fractures in relation to menstrual status and bone parameters in young athletes. Med Sci Sports Exerc. 2015. https://doi.org/10.1249/MSS.0000000000000574.

    Article  PubMed Central  PubMed  Google Scholar 

  185. Warren MP, Brooks-Gunn J, Fox RP, Holderness CC, Hyle EP, Hamilton WG, Hamilton L. Persistent osteopenia in ballet dancers with amenorrhea and delayed menarche despite hormone therapy: a longitudinal study. Fertil Steril. 2003. https://doi.org/10.1016/S0015-0282(03)00660-5.

    Article  PubMed  Google Scholar 

  186. Strokosch GR, Friedman AJ, Wu SC, Kamin M. Effects of an oral contraceptive (Norgestimate/Ethinyl Estradiol) on bone Mineral density in adolescent females with Anorexia Nervosa: a Double-Blind, placebo-controlled study. J Adolesc Health. 2006. https://doi.org/10.1016/j.jadohealth.2006.09.010.

    Article  PubMed  Google Scholar 

  187. Gordon CM, Ackerman KE, Berga SL, Kaplan JR, Mastorakos G, Misra M, Murad MH, Santoro NF, Warren MP. Functional hypothalamic amenorrhea: an endocrine society clinical practice guideline. J Clin Endocrinol Metab. 2017. https://doi.org/10.1210/jc.2017-00131.

    Article  PubMed Central  PubMed  Google Scholar 

  188. Haverinen A, Luiro K, Kangasniemi MH, Piltonen TT, Hustad S, Heikinheimo O, Tapanainen JS. Estradiol Valerate vs ethinylestradiol in combined oral contraceptives: effects on the Pituitary-Ovarian Axis. J Clin Endocrinol Metab. 2022. https://doi.org/10.1210/clinem/dgac150.

    Article  PubMed  Google Scholar 

  189. Miller KK, Meenaghan E, Lawson EA, Misra M, Gleysteen S, Schoenfeld D, Herzog D, Klibanski A. Effects of risedronate and low-dose transdermal testosterone on bone mineral density in women with anorexia nervosa: a randomized, placebo-controlled study. J Clin Endocrinol Metab. 2011. https://doi.org/10.1210/jc.2011-0380.

    Article  PubMed Central  PubMed  Google Scholar 

  190. Golden NH, Iglesias EA, Jacobson MS, Carey D, Meyer W, Schebendach J, Hertz S, Shenker IR. Alendronate for the treatment of osteopenia in anorexia nervosa: a randomized, double-blind, placebo-controlled trial. J Clin Endocrinol Metab. 2005. https://doi.org/10.1210/jc.2004-1659.

    Article  PubMed  Google Scholar 

  191. Deuschle M, Gotthardt U, Schweiger U, Weber B, Körner A, Schmider J, Standhardt H, Lammers CH, Heuser I. With aging in humans the activity of the hypothalamus-pituitary-adrenal system increases and its diurnal amplitude flattens. Life Sci. 1997. https://doi.org/10.1016/S0024-3205(97)00926-0.

    Article  PubMed  Google Scholar 

  192. Kalak R, Zhou H, Street J, Day RE, Modzelewski JRK, Spies CM, Liu PY, Li G, Dunstan CR, Seibel MJ. Endogenous glucocorticoid signalling in osteoblasts is necessary to maintain normal bone structure in mice. Bone. 2009. https://doi.org/10.1016/j.bone.2009.03.673.

    Article  PubMed  Google Scholar 

  193. Purnell JQ, Brandon DD, Isabelle LM, Loriaux DL, Samuels MH. Association of 24-Hour cortisol production rates, cortisol-binding globulin, and plasma-free cortisol levels with body composition, leptin levels, and aging in adult men and women. J Clin Endocrinol Metab. 2004. https://doi.org/10.1210/jc.2003-030440.

    Article  PubMed  Google Scholar 

  194. Raff H, Raff JL, Duthie EH, Wilson CR, Sasse EA, Rudman I, Mattson D. Elevated salivary cortisol in the evening in healthy elderly men and women: correlation with bone mineral density. Journals of Gerontology - Series A Biological Sciences and Medical Sciences. 1999; https://doi.org/10.1093/gerona/54.9.M479.

  195. Frenkel B, White W, Tuckermann J. Glucocorticoid-Induced osteoporosis. Adv Exp Med Biol. 2015. https://doi.org/10.1007/978-1-4939-2895-8_8.

    Article  PubMed Central  PubMed  Google Scholar 

  196. Lane NE, Yao W, Balooch M, Nalla RK, Balooch G, Habelitz S, Kinney JH, Bonewald LF. Glucocorticoid-treated mice have localized changes in trabecular bone material properties and osteocyte lacunar size that are not observed in placebo-treated or estrogen-deficient mice. J Bone Min Res. 2006. https://doi.org/10.1359/JBMR.051103.

    Article  Google Scholar 

  197. Jia D, O’Brien CA, Stewart SA, Manolagas SC, Weinstein RS. Glucocorticoids act directly on osteoclasts to increase their life span and reduce bone density. Endocrinology. 2006. https://doi.org/10.1210/en.2006-0459.

    Article  PubMed  Google Scholar 

  198. Kim HJ, Zhao H, Kitaura H, Bhattacharyya S, Brewer JA, Muglia LJ, Ross FP, Teitelbaum SL. Glucocorticoids suppress bone formation via the osteoclast. J Clin Invest. 2006. https://doi.org/10.1172/JCI28084.

    Article  PubMed Central  PubMed  Google Scholar 

  199. Lane NE. Glucocorticoid-Induced osteoporosis: New insights into the pathophysiology and treatments. Curr Osteoporos Rep. 2019. https://doi.org/10.1007/s11914-019-00498-x.

    Article  PubMed Central  PubMed  Google Scholar 

  200. Rubin MR, Bilezikian JP, Clinical. The role of parathyroid hormone in the pathogenesis of glucocorticoid-induced osteoporosis: a re-examination of the evidence. J Clin Endocrinol Metab. Review 2002;151. https://doi.org/10.1210/jc.2002-012101.

  201. Mazziotti G, Giustina A. Glucocorticoids and the regulation of growth hormone secretion. Nat Rev Endocrinol. 2013. https://doi.org/10.1038/nrendo.2013.5.

    Article  PubMed  Google Scholar 

  202. Murray RD, Ekman B, Uddin S, et al. Management of glucocorticoid replacement in adrenal insufficiency shows notable heterogeneity – data from the EU-AIR. Clin Endocrinol (Oxf). 2017. https://doi.org/10.1111/cen.13267.

    Article  PubMed  Google Scholar 

  203. Mazziotti G, Porcelli T, Bianchi A, Cimino V, Patelli I, Mejia C, Fusco A, Giampietro A, De Marinis L, Giustina A. Glucocorticoid replacement therapy and vertebral fractures in hypopituitary adult males with GH deficiency. Eur J Endocrinol. 2010. https://doi.org/10.1530/EJE-10-0125.

    Article  PubMed  Google Scholar 

  204. Løvs̊ K, Gjesdal CG, Christensen M, et al. Glucocorticoid replacement therapy and pharmacogenetics in Addison’s disease: effects on bone. Eur J Endocrinol. 2009. https://doi.org/10.1530/EJE-08-0880.

    Article  Google Scholar 

  205. Camozzi V, Betterle C, Frigo AC, et al. Vertebral fractures assessed with dual-energy X-ray absorptiometry in patients with Addison’s disease on glucocorticoid and mineralocorticoid replacement therapy. Endocrine. 2018. https://doi.org/10.1007/s12020-017-1380-8.

    Article  PubMed  Google Scholar 

  206. Björnsdottir S, Sääf M, Bensing S, Kämpe O, Michaëlsson K, Ludvigsson JF. Risk of hip fracture in Addison’s disease: a population-based cohort study. J Intern Med. 2011. https://doi.org/10.1111/j.1365-2796.2011.02352.x.

    Article  PubMed  Google Scholar 

  207. Mazziotti G, Battista C, Maffezzoni F, et al. Treatment of acromegalic osteopathy in real-life clinical practice: the BAAC (bone active drugs in acromegaly) study. J Clin Endocrinol Metab. 2020. https://doi.org/10.1210/clinem/dgaa363.

    Article  PubMed Central  PubMed  Google Scholar 

  208. Chiodini I, Vainicher CE, Morelli V, Palmieri S, Cairoli E, Salcuni AS, Copetti M, Scillitani A. Endogenous subclinical hypercortisolism and bone: a clinical review. Eur J Endocrinol. 2016. https://doi.org/10.1530/EJE-16-0289.

    Article  PubMed  Google Scholar 

  209. Stachowska B, Halupczok-Żyła J, Kuliczkowska-Płaksej J, Syrycka J, Bolanowski M. Decreased trabecular bone score in patients with active endogenous Cushing’s syndrome. Front Endocrinol (Lausanne). 2021. https://doi.org/10.3389/fendo.2020.593173.

    Article  PubMed  Google Scholar 

  210. Eller-Vainicher C, Morelli V, Ulivieri FM, et al. Bone quality, as measured by trabecular bone score in patients with adrenal incidentalomas with and without subclinical hypercortisolism. J Bone Min Res. 2012. https://doi.org/10.1002/jbmr.1648.

    Article  Google Scholar 

  211. Zdrojowy-Wełna A, Halupczok-Żyła J, Słoka N, Syrycka J, Gojny Ł, Bolanowski M. Trabecular bone score and sclerostin concentrations in patients with primary adrenal insufficiency. Front Endocrinol (Lausanne). 2022. https://doi.org/10.3389/fendo.2022.996157.

    Article  PubMed  Google Scholar 

  212. Isidori AM, Arnaldi G, Boscaro M, et al. Towards the tailoring of glucocorticoid replacement in adrenal insufficiency: the Italian society of Endocrinology Expert Opinion. J Endocrinol Invest. 2020. https://doi.org/10.1007/s40618-019-01146-y.

    Article  PubMed Central  PubMed  Google Scholar 

  213. Williams AJ, Robson H, Kester MHA, van Leeuwen JPTM, Shalet SM, Visser TJ, Williams GR. Iodothyronine deiodinase enzyme activities in bone. Bone. 2008. https://doi.org/10.1016/j.bone.2008.03.019.

    Article  PubMed Central  PubMed  Google Scholar 

  214. Williams GR, Bassett JHD. Thyroid diseases and bone health. J Endocrinol Invest. 2018. https://doi.org/10.1007/s40618-017-0753-4.

    Article  PubMed  Google Scholar 

  215. Duncan Bassett JH, Williams GR. Role of thyroid hormones in skeletal development and bone maintenance. Endocr Rev. 2018. https://doi.org/10.1210/er.2015-1106.

    Article  Google Scholar 

  216. Nicholls JJ, Brassill MJ, Williams GR, Bassett JHD. The skeletal consequences of thyrotoxicosis. J Endocrinol. 2012. https://doi.org/10.1530/JOE-12-0059.

    Article  PubMed  Google Scholar 

  217. Gorka J, Taylor-Gjevre RM, Arnason T. Metabolic and clinical consequences of hyperthyroidism on bone density. Int J Endocrinol. 2013. https://doi.org/10.1155/2013/638727.

    Article  PubMed Central  PubMed  Google Scholar 

  218. Harvey CB, Bassett JHD, Maruvada P, Yen PM, Williams GR. The rat thyroid hormone receptor (TR) ∆β3 displays cell-, TR isoform-, and thyroid hormone response element-specific actions. Endocrinology. 2007. https://doi.org/10.1210/en.2006-1248.

    Article  PubMed  Google Scholar 

  219. Wexler JA, Sharretts J. Thyroid and bone. Endocrinol Metab Clin North Am. 2007; https://doi.org/10.1016/j.ecl.2007.04.005. PMID: 17673124.

  220. Bassett JHD, Boyde A, Howell PGT, et al. Optimal bone strength and mineralization requires the type 2 iodothyronine deiodinase in osteoblasts. Proc Natl Acad Sci U S A. 2010. https://doi.org/10.1073/pnas.0911346107.

    Article  PubMed Central  PubMed  Google Scholar 

  221. Murphy E, Williams GR. The thyroid and the skeleton. Clin Endocrinol (Oxf). 2004. https://doi.org/10.1111/j.1365-2265.2004.02053.x.

    Article  PubMed  Google Scholar 

  222. Abu EO, Bord S, Horner A, Chatterjee VKK, Compston JE. The expression of thyroid hormone receptors in human bone. Bone. 1997. https://doi.org/10.1016/S8756-3282(97)00097-5.

    Article  PubMed  Google Scholar 

  223. O’Shea PJ, Harvey CB, Suzuki H, Kaneshige M, Kaneshige K, Cheng SY, Williams GR. A thyrotoxic skeletal phenotype of advanced bone formation in mice with resistance to thyroid hormone. Mol Endocrinol. 2003. https://doi.org/10.1210/me.2002-0296.

    Article  PubMed  Google Scholar 

  224. Bassett JHD, Williams GR. The skeletal phenotypes of trα and tbβ mutant mice. J Mol Endocrinol. 2009. https://doi.org/10.1677/JME-08-0142.

    Article  PubMed  Google Scholar 

  225. Bassett JHD, Williams GR. The molecular actions of thyroid hormone in bone. Trends Endocrinol Metabolism. 2003. https://doi.org/10.1016/S1043-2760(03)00144-9.

    Article  Google Scholar 

  226. Gauthier K, Plateroti M, Harvey CB, et al. Genetic analysis reveals different functions for the products of the thyroid hormone receptor α locus. Mol Cell Biol. 2001. https://doi.org/10.1128/mcb.21.14.4748-4760.2001.

    Article  PubMed Central  PubMed  Google Scholar 

  227. Bassett JHD, Nordström K, Boyde A, Howell PGT, Kelly S, Vennström B, Williams GR. Thyroid status during skeletal development determines adult bone structure and mineralization. Mol Endocrinol. 2007. https://doi.org/10.1210/me.2007-0157.

    Article  PubMed Central  PubMed  Google Scholar 

  228. Monfoulet LE, Rabier B, Dacquin R, Anginot A, Photsavang J, Jurdic P, Vico L, Malaval L, Chassande O. Thyroid hormone receptor β mediates thyroid hormone effects on bone remodeling and bone mass. J Bone Min Res. 2011. https://doi.org/10.1002/jbmr.432.

    Article  Google Scholar 

  229. Schmid C, Steiner T, Froesch ER. Triiodothyronine increases responsiveness of cultured rat bone cells to parathyroid hormone. Acta Endocrinol (Copenh). 1986. https://doi.org/10.1530/acta.0.1110213.

    Article  PubMed  Google Scholar 

  230. Gu WX, Stern PH, Madison LD, Du GG. Mutual up-regulation of thyroid hormone and parathyroid hormone receptors in rat osteoblastic osteosarcoma 17/2.8 cells. Endocrinology. 2001. https://doi.org/10.1210/endo.142.1.7905.

    Article  PubMed  Google Scholar 

  231. Abe E, Marians RC, Yu W, et al. TSH is a negative regulator of skeletal remodeling. Cell. 2003. https://doi.org/10.1016/S0092-8674(03)00771-2.

    Article  PubMed  Google Scholar 

  232. Tsai JA, Janson A, Bucht E, Kindmark H, Marcus C, Stark A, Zemack HR, Torring O. Weak evidence of Thyrotropin receptors in primary cultures of human osteoblast-like cells. Calcif Tissue Int. 2004. https://doi.org/10.1007/s00223-003-0108-3.

    Article  PubMed  Google Scholar 

  233. Eriksen EF, Mosekilde L, Melsen F. Kinetics of trabecular bone resorption and formation in hypothyroidism: evidence for a positive balance per remodeling cycle. Bone. 1986. https://doi.org/10.1016/8756-3282(86)90681-2.

    Article  PubMed  Google Scholar 

  234. Harvey CB, O’Shea PJ, Scott AJ, Robson H, Siebler T, Shalet SM, Samarut J, Chassande O, Williams GR. Molecular mechanisms of thyroid hormone effects on bone growth and function. Mol Genet Metab. 2002. https://doi.org/10.1006/mgme.2001.3268.

    Article  PubMed  Google Scholar 

  235. Stevens DA, Harvey CB, Scott AJ, O’Shea PJ, Barnard JC, Williams AJ, Brady G, Samarut J, Chassande O, Williams GR. Thyroid hormone activates fibroblast growth factor receptor-1 in bone. Mol Endocrinol. 2003. https://doi.org/10.1210/me.2003-0137.

    Article  PubMed  Google Scholar 

  236. Persani L, Preziati D, Matthews CH, Sartorio A, Chatterjee VKK, Beck-Peccoz P. Serum levels of carboxyterminal cross-linked telopeptide of type I collagen (ICTP) in the differential diagnosis of the syndromes of inappropriate secretion of TSH. Clin Endocrinol (Oxf). 1997. https://doi.org/10.1046/j.1365-2265.1997.2351057.x.

    Article  PubMed  Google Scholar 

  237. Sabuncu T, Aksoy N, Arikan E, Ugur B, Tasan E, Hatemi H. Early changes in parameters of bone and mineral metabolism during therapy for hyper- and hypothyroidism. Endocr Res. 2001. https://doi.org/10.1081/ERC-100107181.

    Article  PubMed  Google Scholar 

  238. Christy AL, D’Souza V, Babu RP, Takodara S, Manjrekar P, Hegde A, Rukmini MS. Utility of C-terminal telopeptide in evaluating levothyroxine replacement therapy-induced bone loss. Biomark Insights. 2014. https://doi.org/10.4137/BMI.S13965.

    Article  PubMed Central  PubMed  Google Scholar 

  239. Miyakawa M, Tsushima T, Demura H. Carboxy-terminal propeptide of type 1 Procollagen (P1CP) and carboxy-terminal telopeptide of type 1 Collagen (1CTP) as sensitive markers of bone metabolism in thyroid disease. Endocr J. 1996. https://doi.org/10.1507/endocrj.43.701.

    Article  PubMed  Google Scholar 

  240. Mosekilde L, Melsen F. Morphometric and dynamic studies of bone changes in hypothyroidism. Acta Pathol Microbiol Scand A. 1978. https://doi.org/10.1111/j.1699-0463.1978.tb02012.x.

    Article  PubMed  Google Scholar 

  241. Szulc P. Biochemical bone turnover markers in hormonal disorders in adults: a narrative review. J Endocrinol Invest. 2020. https://doi.org/10.1007/s40618-020-01269-7.

    Article  PubMed  Google Scholar 

  242. Tuchendler D, Bolanowski M. The influence of thyroid dysfunction on bone metabolism. Thyroid Res. 2014. https://doi.org/10.1186/s13044-014-0012-0.

    Article  PubMed Central  PubMed  Google Scholar 

  243. Martinez ME, Herranz L, De Pedro C, Pallardo LF. Osteocalcin levels in patients with hyper- and hypothyroidism. Horm Metab Res. 1986. https://doi.org/10.1055/s-2007-1012275.

    Article  PubMed  Google Scholar 

  244. Shimon I, Cohen O, Lubetsky A, Olchovsky D. Thyrotropin suppression by thyroid hormone replacement is correlated with thyroxine level normalization in central hypothyroidism. Thyroid. 2002. https://doi.org/10.1089/105072502760339406.

    Article  PubMed  Google Scholar 

  245. Alexopoulou O, Belguin C, De Nayer P, Maiter D. Clinical and hormonal characteristics of central hypothyroidism at diagnosis and during follow-up in adult patients. Eur J Endocrinol. 2004. https://doi.org/10.1530/eje.0.1500001.

    Article  PubMed  Google Scholar 

  246. Nyström HF, Feldt-Rasmussen U, Kourides I, Popovic V, Koltowska-Häggström M, Jonsson B, Johannsson G. The metabolic consequences of thyroxine replacement in adult hypopituitary patients. Pituitary. 2012. https://doi.org/10.1007/s11102-011-0356-6.

    Article  Google Scholar 

  247. Formenti AM, Mazziotti G, Giubbini R, Giustina A. Treatment of hypothyroidism: all that glitters is gold? Endocrine. 2016. https://doi.org/10.1007/s12020-016-0882-0.

    Article  PubMed  Google Scholar 

  248. Martins MRA, Doin FC, Komatsu WR, Barros-Neto TL, Moises VA, Abucham J. Growth hormone replacement improves thyroxine biological effects: implications for management of central hypothyroidism. J Clin Endocrinol Metab. 2007. https://doi.org/10.1210/jc.2007-0941.

    Article  PubMed  Google Scholar 

  249. Mazziotti G, Mormando M, Cristiano A, Bianchi A, Porcelli T, Giampietro A, Maffezzoni F, Serra V, De Marinis L, Giustina A. Association between L-thyroxine treatment, GH deficiency, and radiological vertebral fractures in patients with adult-onset hypopituitarism. Eur J Endocrinol. 2014. https://doi.org/10.1530/EJE-14-0097.

    Article  PubMed  Google Scholar 

  250. Hanna FWF, Pettit RJ, Ammari F, Evans WD, Sandeman D, Lazarus JH. Effect of replacement doses of thyroxine on bone mineral density. Clin Endocrinol (Oxf). 1998. https://doi.org/10.1046/j.1365-2265.1998.3871200.x.

    Article  PubMed  Google Scholar 

  251. Leger J, Ruiz JC, Guibourdenche J, Kindermans C, Garabedian M, Czernichow P. Bone mineral density and metabolism in children with congenital hypothyroidism after prolonged L-thyroxine therapy. Acta Paediatr. 1997. https://doi.org/10.1111/j.1651-2227.1997.tb08572.x.

    Article  PubMed  Google Scholar 

  252. Tuchendler D, Bolanowski M. Assessment of bone metabolism in premenopausal females with hyperthyroidism and hypothyroidism. Endokrynol Pol. 2013;64(1):40–4.

    CAS  PubMed  Google Scholar 

  253. Vestergaard P, Weeke J, Hoeck HC, Nielsen HK, Rungby J, Rejnmark L, Laurberg P, Mosekilde L. Fractures in patients with primary idiopathic hypothyroidism. Thyroid. 2000. https://doi.org/10.1089/thy.2000.10.335.

    Article  PubMed  Google Scholar 

  254. Vestergaard P, Rejnmark L, Mosekilde L. Influence of hyper- and hypothyroidism, and the effects of treatment with antithyroid drugs and levothyroxine on fracture risk. Calcif Tissue Int. 2005. https://doi.org/10.1007/s00223-005-0068-x.

    Article  PubMed  Google Scholar 

  255. González-Rodríguez LA, Felici-Giovanini ME, Haddock L. Thyroid dysfunction in an adult female population: a population-based study of latin American vertebral osteoporosis study (LAVOS) - Puerto Rico site. P R Health Sci J. 2013;32(2):57–62.

    PubMed Central  PubMed  Google Scholar 

  256. Lee MY, Park JH, Bae KS, Jee YG, Ko AN, Han YJ, Shin JY, Lim JS, Chung CH, Kang SJ. Bone mineral density and bone turnover markers in patients on long-term suppressive levothyroxine therapy for differentiated thyroid cancer. Ann Surg Treat Res. 2014. https://doi.org/10.4174/astr.2014.86.2.55.

    Article  PubMed Central  PubMed  Google Scholar 

  257. Delitala AP, Scuteri A, Doria C. Thyroid hormone diseases and osteoporosis. J Clin Med. 2020. https://doi.org/10.3390/jcm9041034.

    Article  PubMed Central  PubMed  Google Scholar 

  258. Uzzan B, Campos J, Cucherat M, Nony P, Boissel JP, Perret GY. Effects on bone mass of long term treatment with thyroid hormones: a meta-analysis. J Clin Endocrinol Metab. 1996. https://doi.org/10.1210/jc.81.12.4278.

    Article  PubMed  Google Scholar 

  259. Rosario PW. Radioiodine therapy in elderly patients with subclinical hyperthyroidism due to non-voluminous nodular goiter and its effect on bone metabolism. Arq Bras De Endocrinol Metabol. 2013. https://doi.org/10.1590/s0004-27302013000200008.

    Article  Google Scholar 

  260. Vestergaard P, Mosekilde L. Fractures in patients with hyperthyroidism and hypothyroidism: a nationwide follow-up study in 16, 249 patients. Thyroid. 2002. https://doi.org/10.1089/105072502760043503.

    Article  PubMed  Google Scholar 

  261. Abrahamsen B, Jørgensen HL, Laulund AS, Nybo M, Bauer DC, Brix TH, Hegedüs L. The excess risk of major osteoporotic fractures in hypothyroidism is driven by cumulative hyperthyroid as opposed to hypothyroid time: an observational register-based time-resolved cohort analysis. J Bone Min Res. 2015. https://doi.org/10.1002/jbmr.2416.

    Article  Google Scholar 

  262. Ko YJ, Kim JY, Lee J, Song HJ, Kim JY, Choi NK, Park BJ. Levothyroxine dose and fracture risk according to the osteoporosis status in elderly women. J Prev Med Public Health. 2014. https://doi.org/10.3961/jpmph.2014.47.1.36.

    Article  PubMed Central  PubMed  Google Scholar 

  263. Hong AR, Kang HC. Evaluation and Management of Bone Health in patients with thyroid diseases: a position Statement of the Korean thyroid Association. Endocrinol Metabolism. 2023. https://doi.org/10.3803/enm.2023.1701.

    Article  Google Scholar 

  264. Leboff MS, Greenspan SL, Insogna KL, Lewiecki EM, Saag KG, Singer AJ, Siris ES. The clinician’s guide to prevention and treatment of osteoporosis. Osteoporos Int. 2022. https://doi.org/10.1007/s00198-021-05900-y.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Funding

No funding was received to assist with the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

MB presented the idea for the article. JKP, AZW, AJP, ŁG, MB performed the literature search and data analysis, JKP, AZW, AJP, ŁG, MB drafted and critically revised the work. All author accepted the final version of manuscript.

Corresponding author

Correspondence to Aleksandra Jawiarczyk-Przybyłowska.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuliczkowska-Płaksej, J., Zdrojowy-Wełna, A., Jawiarczyk-Przybyłowska, A. et al. Diagnosis and therapeutic approach to bone health in patients with hypopituitarism. Rev Endocr Metab Disord (2024). https://doi.org/10.1007/s11154-024-09878-w

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11154-024-09878-w

Keywords

Navigation