Skip to main content

Advertisement

Log in

The emerging role of transcription factor FOXP3 in thyroid cancer

  • Published:
Reviews in Endocrine and Metabolic Disorders Aims and scope Submit manuscript

Abstract

Transcription factor FOXP3 is a crucial regulator in the development and function of regulatory T cells (Treg) that are essential for immunological tolerance and homeostasis. Numerous studies have indicated the correlation of tumor infiltrating FOXP3+ Treg upregulation with poor prognostic parameters in thyroid cancer, including lymph node metastases, extrathyroidal extension, and multifocality. Most immune-checkpoint molecules are expressed in Treg. The blockage of such signals with checkpoint inhibitors has been approved for several solid tumors, but not yet for thyroid cancer. Thyroid abnormalities may be induced by checkpoint inhibitors. For example, hypothyroidism, thyrotoxicosis, painless thyroiditis, or even thyroid storm are more frequently associated with anti-PD-1 antibodies (pembrolizumab and nivolumab). Therefore, Targeting FOXP3+ Treg may have impacts on checkpoint molecules and the growth of thyroid cancer. Several factors may impact the role and stability of FOXP3, such as alternative RNA splicing, mutations, and post-translational modification. In addition, the role of FOXP3+ Treg in the tumor microenvironment is also affected by the complex regulatory network formed by FOXP3 and its transcriptional partners. Here we discussed how the expression and function of FOXP3 were regulated and how FOXP3 interacted with its targets in Treg, aiming to help the development of FOXP3 as a potential therapeutic target for thyroid cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

ATC:

anaplastic thyroid cancer

BRAF:

B-type Raf kinase

CNS2:

Conserved noncoding sequence 2

FTC:

follicular thyroid cancer

HAT:

histone acetyltransferases

HDACs:

histone/protein deacetylases

hnRNPF:

heterogeneous nuclear ribonucleoprotein

IFN-γ:

interferon-gamma

IPEX:

Immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome

iTreg:

inducible Treg

MALT:

mucosa-associated lymphoid tissue

MNG:

multinodular goiter

MTC:

medullary thyroid cancer

NFAT:

nuclear factor of activated T-cells

pDCs:

plasmacytoid dendritic cells

PD-L1:

programmed death-ligand 1

PTC:

papillary thyroid cancer

PTM:

Post-translation modification

PTMC:

papillary thyroid microcarcinoma

qRRM:

quasi-RNA recognition motif

RUNX:

runt-related transcription factor

Tet2:

ten-eleven-translocation 2

Treg:

regulatory T cells

References

  1. Cabanillas ME, McFadden DG, Durante C. Thyroid cancer. Lancet. 2016;388:2783–95.

    Article  CAS  Google Scholar 

  2. Rubinstein JC, Dinauer C, Herrick-Reynolds K, Morotti R, Callender GG, Christison-Lagay ER. Lymph node ratio predicts recurrence in pediatric papillary thyroid cancer. J Pediatr Surg. 2019;54:129–32.

    Article  PubMed  Google Scholar 

  3. Alobuia W, Gillis A, Kebebew E. Contemporary management of anaplastic thyroid cancer. Curr Treat Options Oncol. 2020;21:78.

    Article  PubMed  Google Scholar 

  4. Valerio L, Pieruzzi L, Giani C, Agate L, Bottici V, Lorusso L, et al. Targeted therapy in thyroid cancer: state of the art. Clin Oncol (R Coll Radiol). 2017;29:316–24.

    Article  CAS  Google Scholar 

  5. Naoum GE, Morkos M, Kim B, Arafat W. Novel targeted therapies and immunotherapy for advanced thyroid cancers. Mol Cancer. 2018;17:51.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Laetitia G, Sven S, Fabrice J. Combinatorial therapies in thyroid cancer: an overview of preclinical and clinical progresses. Cells. 2020;9.

  7. Cabanillas ME, Ryder M, Jimenez C. Targeted therapy for advanced thyroid cancer: kinase inhibitors and beyond. Endocr Rev. 2019;40:1573–604.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Schlumberger M, Tahara M, Wirth LJ, Robinson B, Brose MS, Elisei R, et al. Lenvatinib versus placebo in radioiodine-refractory thyroid cancer. N Engl J Med. 2015;372:621–30.

    Article  PubMed  CAS  Google Scholar 

  9. Yu ST, Ge JN, Luo JY, Wei ZG, Sun BH, Lei ST. Treatment-related adverse effects with TKIs in patients with advanced or radioiodine refractory differentiated thyroid carcinoma: a systematic review and meta-analysis. Cancer Manag Res. 2019;11:1525–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Muenst S, Laubli H, Soysal SD, Zippelius A, Tzankov A, Hoeller S. The immune system and cancer evasion strategies: therapeutic concepts. J Intern Med. 2016;279:541–62.

    Article  CAS  PubMed  Google Scholar 

  11. Wu Y, Chen W, Xu ZP, Gu W. PD-L1 Distribution and perspective for cancer immunotherapy-blockade, knockdown, or inhibition. Front Immunol. 2019;10:2022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Girolami I, Pantanowitz L, Mete O, Brunelli M, Marletta S, Colato C, et al. Programmed death-ligand 1 (PD-L1) is a potential biomarker of disease-free survival in papillary thyroid carcinoma: a systematic review and meta-analysis of PD-L1 immunoexpression in follicular epithelial derived thyroid carcinoma. Endocr Pathol. 2020;31:291–300.

    Article  CAS  PubMed  Google Scholar 

  13. Ferrari SM, Fallahi P, Galetta F, Citi E, Benvenga S, Antonelli A. Thyroid disorders induced by checkpoint inhibitors. Rev Endocr Metab Disord. 2018;19:325–33.

    Article  PubMed  Google Scholar 

  14. French JD, Weber ZJ, Fretwell DL, Said S, Klopper JP, Haugen BR. Tumor-associated lymphocytes and increased FoxP3+ regulatory T cell frequency correlate with more aggressive papillary thyroid cancer. J Clin Endocrinol Metab. 2010;95:2325–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yu H, Huang X, Liu X, Jin H, Zhang G, Zhang Q, et al. Regulatory T cells and plasmacytoid dendritic cells contribute to the immune escape of papillary thyroid cancer coexisting with multinodular non-toxic goiter. Endocrine. 2013;44:172–81.

    Article  CAS  PubMed  Google Scholar 

  16. Ryu HS, Park YS, Park HJ, Chung YR, Yom CK, Ahn SH, et al. Expression of indoleamine 2,3-dioxygenase and infiltration of FOXP3+ regulatory T cells are associated with aggressive features of papillary thyroid microcarcinoma. Thyroid. 2014;24:1232–40.

    Article  CAS  PubMed  Google Scholar 

  17. Ugolini C, Elisei R, Proietti A, Pelliccioni S, Lupi C, Borrelli N, et al. FoxP3 expression in papillary thyroid carcinoma: a possible resistance biomarker to iodine 131 treatment. Thyroid. 2014;24:339–46.

    Article  CAS  PubMed  Google Scholar 

  18. Savage PA, Klawon DEJ, Miller CH. Regulatory T Cell Development. Annu Rev Immunol. 2020;38:421–53.

    Article  CAS  PubMed  Google Scholar 

  19. Fontenot JD, Gavin MA, Rudensky AY. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol. 2003;4:330–36.

  20. Deng G, Song X, Greene MI. FoxP3 in Treg cell biology: a molecular and structural perspective. Clin Exp Immunol. 2020;199:255–62.

    Article  CAS  PubMed  Google Scholar 

  21. Rudra D, deRoos P, Chaudhry A, Niec RE, Arvey A, Samstein RM, et al. Transcription factor Foxp3 and its protein partners form a complex regulatory network. Nat Immunol. 2012;13:1010–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wu Y, Borde M, Heissmeyer V, Feuerer M, Lapan AD, Stroud JC, et al. FOXP3 controls regulatory T cell function through cooperation with NFAT. Cell. 2006;126:375–87.

    Article  CAS  PubMed  Google Scholar 

  23. Hu H, Djuretic I, Sundrud MS, Rao A. Transcriptional partners in regulatory T cells: Foxp3. Runx and NFAT Trends Immunol. 2007;28:329–32.

    Article  CAS  PubMed  Google Scholar 

  24. Wang Y, Su MA, Wan YY. An essential role of the transcription factor GATA-3 for the function of regulatory T cells. Immunity. 2011;35:337–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Konopacki C, Pritykin Y, Rubtsov Y, Leslie CS, Rudensky AY. Transcription factor Foxp1 regulates Foxp3 chromatin binding and coordinates regulatory T cell function. Nat Immunol. 2019;20:232–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wing K, Onishi Y, Prieto-Martin P, Yamaguchi T, Miyara M, Fehervari Z, Nomura T, Sakaguchi S. CTLA-4 Control over Foxp3+ Regulatory T Cell Function. Science. 2008;322:271–74.

  27. Tone Y, Furuuchi K, Kojima Y, Tykocinski ML, Greene MI, Tone M. Smad3 and NFAT cooperate to induce Foxp3 expression through its enhancer. Nat Immunol. 2008;9:194–202.

    Article  CAS  PubMed  Google Scholar 

  28. Xing M. BRAF mutation in thyroid cancer. Endocr Relat Cancer. 2005;12:245–62.

    Article  CAS  PubMed  Google Scholar 

  29. Kebebew E, Weng J, Bauer J, Ranvier G, Clark OH, Duh QY, et al. The prevalence and prognostic value of BRAF mutation in thyroid cancer. Ann Surg. 2007;246:466-70; discussion 470–61.

  30. Ge J, Wang J, Wang H, Jiang X, Liao Q, Gong Q, et al. The BRAF V600E mutation is a predictor of the effect of radioiodine therapy in papillary thyroid cancer. J Cancer. 2020;11:932–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Flockhart RJ, Armstrong JL, Reynolds NJ, Lovat PE. NFAT signalling is a novel target of oncogenic BRAF in metastatic melanoma. Br J Cancer. 2009;101:1448–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Collins A, Littman DR, Taniuchi I. RUNX proteins in transcription factor networks that regulate T-cell lineage choice. Nat Rev Immunol. 2009;9:106–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ono M, Yaguchi H, Ohkura N, Kitabayashi I, Nagamura Y, Nomura T, et al. Foxp3 controls regulatory T-cell function by interacting with AML1/Runx1. Nature. 2007;446:685–9.

    Article  CAS  PubMed  Google Scholar 

  34. Bruno L, Mazzarella L, Hoogenkamp M, Hertweck A, Cobb BS, Sauer S, et al. Runx proteins regulate Foxp3 expression. J Exp Med. 2009;206:2329–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Rudra D, Egawa T, Chong MM, Treuting P, Littman DR, Rudensky AY. Runx-CBFbeta complexes control expression of the transcription factor Foxp3 in regulatory T cells. Nat Immunol. 2009;10:1170–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Dalle Carbonare L, Frigo A, Francia G, Davi MV, Donatelli L, Stranieri C, et al. Runx2 mRNA expression in the tissue, serum, and circulating non-hematopoietic cells of patients with thyroid cancer. J Clin Endocrinol Metab. 2012;97:E1249-1256.

    Article  CAS  PubMed  Google Scholar 

  37. Niu DF, Kondo T, Nakazawa T, Oishi N, Kawasaki T, Mochizuki K, et al. Transcription factor Runx2 is a regulator of epithelial-mesenchymal transition and invasion in thyroid carcinomas. Lab Invest. 2012;92:1181–90.

    Article  CAS  PubMed  Google Scholar 

  38. Carr FE, Tai PW, Barnum MS, Gillis NE, Evans KG, Taber TH, et al. Thyroid Hormone Receptor-beta (TRbeta) Mediates Runt-Related Transcription Factor 2 (Runx2) Expression in Thyroid Cancer Cells: A Novel Signaling Pathway in Thyroid Cancer. Endocrinology. 2016;157:3278–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ren J, Han L, Tang J, Liu Y, Deng X, Liu Q, et al. Foxp1 is critical for the maintenance of regulatory T-cell homeostasis and suppressive function. PLoS Biol. 2019;17:e3000270.

  40. Jiang W, Li L, Tang Y, Zhang WY, Liu WP, Li GD. Expression of FOXP1 in mucosa-associated lymphoid tissue lymphoma suggests a large tumor cell transformation and predicts a poorer prognosis in the positive thyroid patients. Med Oncol. 2012;29:3352–9.

    Article  CAS  PubMed  Google Scholar 

  41. Xu L, Kitani A, Stuelten C, McGrady G, Fuss I, Strober W. Positive and negative transcriptional regulation of the Foxp3 gene is mediated by access and binding of the Smad3 protein to enhancer I. Immunity. 2010;33:313–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Schlenner SM, Weigmann B, Ruan Q, Chen Y, von Boehmer H. Smad3 binding to the foxp3 enhancer is dispensable for the development of regulatory T cells with the exception of the gut. J Exp Med. 2012;209:1529–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Garcia-Rendueles A, Rodrigues J, Garcia-Rendueles M, Suarez-Fariña M, Perez-Romero S, Barreiro F, et al. Rewiring of the apoptotic TGF-β-SMAD/NFκB pathway through an oncogenic function of p27 in human papillary thyroid cancer. Oncogene. 2017;36:652–66.

    Article  CAS  PubMed  Google Scholar 

  44. Horiuchi S, Onodera A, Hosokawa H, Watanabe Y, Tanaka T, Sugano S, et al. Genome-wide analysis reveals unique regulation of transcription of Th2-specific genes by GATA3. J Immunol. 2011;186:6378–89.

    Article  CAS  PubMed  Google Scholar 

  45. Mailer RKW. Alternative splicing of FOXP3-Virtue and vice. Front Immunol. 2018;9:530.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Van Gool F, Nguyen MLT, Mumbach MR, Satpathy AT, Rosenthal WL, Giacometti S, et al. A mutation in the transcription factor Foxp3 drives T helper 2 effector function in regulatory T cells. Immunity. 2019;50:362–77;e366.

  47. Deng G, Song X, Fujimoto S, Piccirillo CA, Nagai Y, Greene MI. Foxp3 post-translational modifications and Treg suppressive activity. Front Immunol. 2019;10:2486.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Jia H, Qi H, Gong Z, Yang S, Ren J, Liu Y, et al. The expression of FOXP3 and its role in human cancers. Biochim Biophys Acta (BBA) Rev Cancer. 2019;1871:170–78.

  49. Aarts-Riemens T, Emmelot ME, Verdonck LF, Mutis T. Forced overexpression of either of the two common human Foxp3 isoforms can induce regulatory T cells from CD4(+)CD25(-) cells. Eur J Immunol. 2008;38:1381–90.

    Article  CAS  PubMed  Google Scholar 

  50. Joly AL, Liu S, Dahlberg CI, Mailer RK, Westerberg LS, Andersson J. Foxp3 lacking exons 2 and 7 is unable to confer suppressive ability to regulatory T cells in vivo. J Autoimmun. 2015;63:23–30.

    Article  CAS  PubMed  Google Scholar 

  51. Du J, Wang Q, Ziegler SF, Zhou B. FOXP3 interacts with hnRNPF to modulate pre-mRNA alternative splicing. J Biol Chem. 2018;293:10235–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. van der Vliet HJ, Nieuwenhuis EE. IPEX as a result of mutations in FOXP3. Clin Dev Immunol. 2007;2007:89017.

    PubMed  PubMed Central  Google Scholar 

  53. Agakidis C, Agakidou E, Sarafidis K, Papoulidis I, Xinias I, Farmaki E. Immune dysregulation, polyendocrinopathy, enteropathy, x-linked syndrome associated with a novel mutation of FOXP3 gene. Front Pediatr. 2019;7:20.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Hayatsu N, Miyao T, Tachibana M, Murakami R, Kimura A, Kato T, et al. Analyses of a mutant Foxp3 allele reveal BATF as a critical transcription factor in the differentiation and accumulation of tissue regulatory T cells. Immunity. 2017;47:268–83:e269.

  55. Zhao Y, Guo H, Qiao G, Zucker M, Langdon WY, Zhang J. E3 ubiquitin ligase Cbl-b regulates thymic-derived CD4+CD25+ regulatory T cell development by targeting Foxp3 for ubiquitination. J Immunol (Baltimore, Md : 1950). 2015;194:1639–45.

  56. Nie H, Zheng Y, Li R, Guo TB, He D, Fang L, et al. Phosphorylation of FOXP3 controls regulatory T cell function and is inhibited by TNF-alpha in rheumatoid arthritis. Nat Med. 2013;19:322–8.

    Article  CAS  PubMed  Google Scholar 

  57. Kagoya Y, Saijo H, Matsunaga Y, Guo T, Saso K, Anczurowski M, et al. Arginine methylation of FOXP3 is crucial for the suppressive function of regulatory T cells. J Autoimmun. 2019;97:10–21.

    Article  CAS  PubMed  Google Scholar 

  58. Lei Zheng WJ, Yang Zhang LX. Association between FOXP3, FOXE1 Gene polymorphisms and risk of differentiated thyroid cancer in Chinese han population. Mol Biol. 2015;04.

  59. Szylberg L, Bodnar M, Harasymczuk J, Marszalek A. Expression of FoxP3 protein plays a key role in thyroid tumors in children. Fetal Pediatr Pathol. 2014;33:84–91.

    Article  CAS  PubMed  Google Scholar 

  60. Chu R, Liu SY, Vlantis AC, van Hasselt CA, Ng EK, Fan MD, et al. Inhibition of Foxp3 in cancer cells induces apoptosis of thyroid cancer cells. Mol Cell Endocrinol. 2015;399:228–34.

    Article  CAS  PubMed  Google Scholar 

  61. Wang S, Wu J, Ren J, Vlantis AC, Li MY, Liu SYW, et al. MicroRNA-125b interacts with Foxp3 to induce autophagy in thyroid cancer. Mol Ther. 2018;26:2295–303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Amin D, Richa T, Mollaee M, Zhan T, Tassone P, Johnson J, et al. Metformin effects on FOXP3(+) and CD8(+) T cell infiltrates of head and neck squamous cell carcinoma. Laryngoscope. 2019.

  63. He Y, Cao L, Wang L, Liu L, Huang Y, Gong X. Metformin inhibits proliferation of human thyroid cancer TPC-1 cells by decreasing LRP2 to suppress the JNK pathway. Onco Targets Ther. 2020;13:45–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Casares N, Rudilla F, Arribillaga L, Llopiz D, Riezu-Boj JI, Lozano T, et al. A peptide inhibitor of FOXP3 impairs regulatory T cell activity and improves vaccine efficacy in mice. J Immunol (Baltimore, Md : 1950). 2010;185:5150–59.

  65. Lozano T, Soldevilla MM, Casares N, Villanueva H, Bendandi M, Lasarte JJ, et al. Targeting inhibition of Foxp3 by a CD28 2’-Fluro oligonucleotide aptamer conjugated to P60-peptide enhances active cancer immunotherapy. Biomaterials. 2016;91:73–80.

    Article  CAS  PubMed  Google Scholar 

  66. Qiu H, Zhang J, Guo Q, Zhang Y, Zhong X. Prunella vulgaris L. attenuates experimental autoimmune thyroiditis by inducing indoleamine 2,3-dioxygenase 1 expression and regulatory T cell expansion. Biomed Pharmacother. 2020;128:110288.

  67. Sasidharan Nair V, Song MH, Oh KI. Vitamin C facilitates demethylation of the Foxp3 enhancer in a Tet-dependent manner. J Immunol. 2016;196:2119–31.

    Article  CAS  PubMed  Google Scholar 

  68. Cantorna MT, Lin YD, Arora J, Bora S, Tian Y, Nichols RG, et al. Vitamin D regulates the microbiota to control the numbers of RORγt/FoxP3+ regulatory T cells in the colon. Front Immunol. 2019;10:1772.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Su X, Shen Z, Yang Q, Sui F, Pu J, Ma J, et al. Vitamin C kills thyroid cancer cells through ROS-dependent inhibition of MAPK/ERK and PI3K/AKT pathways via distinct mechanisms. Theranostics. 2019;9:4461–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Huang J, Wang S, Jia Y, Zhang Y, Dai X, Li B. Targeting FOXP3 complex ensemble in drug discovery. Adv Protein Chem Struct Biol. 2020;121:143–68.

    Article  PubMed  Google Scholar 

  71. Mao R, Xiao W, Liu H, Chen B, Yi B, Kraj P, et al. Systematic evaluation of 640 FDA drugs for their effect on CD4(+)Foxp3(+) regulatory T cells using a novel cell-based high throughput screening assay. Biochem Pharmacol. 2013;85:1513–24.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by grants from the Research Grants Council of the Hong Kong Special Administrative Region (No. 14109516), the National Natural Science Foundation of China (No.81472339).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Michael C. F. Tong or George G. Chen.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, Z., Jia, H., Xue, L. et al. The emerging role of transcription factor FOXP3 in thyroid cancer. Rev Endocr Metab Disord 23, 421–429 (2022). https://doi.org/10.1007/s11154-021-09684-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11154-021-09684-8

Keywords

Navigation