Skip to main content

Advertisement

Log in

Gut microbiome and cardiometabolic risk

  • Published:
Reviews in Endocrine and Metabolic Disorders Aims and scope Submit manuscript

Abstract

The last decade has been characterized by an intense research on the composition of the gut microbiome and the links with human health. While previous work was focused on the effects of prebiotics and probiotics, nowadays several laboratories are describing the gut microbiome and its metabolic functions. Gut microbiome interaction with nutrients allows the gut microbiome to survive and at the same time determines the production of metabolites that are either adsorbed by intestinal cell in a mutual relationship or promote detrimental effect. Metabolomics, a new method to approach identification of biomarkers has been used to identify small metabolites in blood and other biofluids. The study of metabolome revealed several microbial derived metabolites that are circulating in blood and potentially affect human health. In this review we describe the links between regulation of metabolism and microbial derived metabolites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. DeFronzo RA, Ferrannini E, Groop L, Henry RR, Herman WH, Holst JJ, et al. Type 2 diabetes mellitus. Nat Rev Dis Primers. 2015;1:15019.

    PubMed  Google Scholar 

  2. Tang WHW, Bäckhed F, Landmesser U, Hazen SL. Intestinal microbiota in cardiovascular health and disease: JACC state-of-the-art review. J Am Coll Cardiol. 2019;73(16):2089–105.

    PubMed  PubMed Central  Google Scholar 

  3. Federici M. Our second genome and the impact on metabolic disorders: why gut microbiome is an important player in diabetes and associated abnormalities. Acta Diabetol. 2019;56(5):491–2.

    PubMed  Google Scholar 

  4. Federici M. Gut microbiome and microbial metabolites: a new system affecting metabolic disorders. J Endocrinol Investig. 2019;42(9):1011–8.

    CAS  Google Scholar 

  5. Kappel BA, Lehrke M. Microbiome, diabetes and heart: a novel link? Herz. 2019;44(3):223–30.

    CAS  PubMed  Google Scholar 

  6. Tierney BT, Yang Z, Luber JM, Beaudin M, Wibowo MC, Baek C, et al. The landscape of genetic content in the gut and Oral human microbiome. Cell Host Microbe. 2019. https://doi.org/10.1016/j.chom.2019.07.008.

    Google Scholar 

  7. Nicholson JK, Holmes E, Kinross J, Burcelin R, Gibson G, Jia W, et al. Host-gut microbiota metabolic interactions. Science. 2012;336(6086):1262–7.

    CAS  PubMed  Google Scholar 

  8. Holmes E, Li JV, Marchesi JR, Nicholson JK. Gut microbiota composition and activity in relation to host metabolic phenotype and disease risk. Cell Metab. 2012;16(5):559–64.

    CAS  PubMed  Google Scholar 

  9. Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006;444(7122):1027–31.

    PubMed  Google Scholar 

  10. Ridaura VK, Faith JJ, Rey FE, Cheng J, Duncan AE, Kau AL, et al. Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science. 2013;341(6150):1241214.

    PubMed  Google Scholar 

  11. Schroeder BO, Bäckhed F. Signals from the gut microbiota to distant organs in physiology and disease. Nat Med. 2016;22(10):1079–89.

    CAS  PubMed  Google Scholar 

  12. Zmora N, Suez J, Elinav E. You are what you eat: diet, health and the gut microbiotaNat. Hepatol: Rev. Gastroenterol; 2019. https://doi.org/10.1038/s41575-018-0061-2. You are what you eat: diet, health and the gut microbiota

    Book  Google Scholar 

  13. Quigley EMM. Gut microbiome as a clinical tool in gastrointestinal disease management: are we there yet? Nat Rev Gastroenterol Hepatol. 2017. https://doi.org/10.1038/nrgastro.2017.29 Gut microbiome as a clinical tool in gastrointestinal disease management: are we there yet?

    Google Scholar 

  14. Forslund K, Hildebrand F, Nielsen T, Falony G, Le Chatelier E, Sunagawa S, et al. Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature. 2015;528:262–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Tilg H, Zmora N, Adolph TE, Elinav E. The intestinal microbiota fuelling metabolic inflammation. Nat Rev Immunol. 2019:1–15. https://doi.org/10.1038/s41577-019-0198-4.

  16. Canfora EE, Meex RCR, Venema K, Blaak EE. Gut microbial metabolites in obesity, NAFLD and T2DM. Nat Rev Endocrinol. 2019;15(5):261–73.

    CAS  PubMed  Google Scholar 

  17. Schüssler-Fiorenza Rose SM, Contrepois K, Moneghetti KJ, Zhou W, Mishra T, Mataraso S, et al. A longitudinal big data approach for precision health. Nat Med. 2019;25(5):792–804.

    PubMed  Google Scholar 

  18. Wilmanski T, Rappaport N, Earls JC, Magis AT, Manor O, Lovejoy J, et al. Blood metabolome predicts gut microbiome α-diversity in humans. Nat Biotechnol. 2019;37:1217–28. https://doi.org/10.1038/s41587-019-0233-9.

    Article  CAS  PubMed  Google Scholar 

  19. Serino M, Fernández-Real JM, García-Fuentes E, Queipo-Ortuño M, Moreno-Navarrete JM, Sánchez A, et al. The gut microbiota profile is associated with insulin action in humans. Acta Diabetol. 2013;50(5):753–61. https://doi.org/10.1007/s00592-012-0410-5 Epub 2012 Jun 19.

    Article  CAS  PubMed  Google Scholar 

  20. Amar J, Serino M, Lange C, Chabo C, Iacovoni J, Mondot S, et al. Involvement of tissue bacteria in the onset of diabetes in humans: evidence for a concept. Diabetologia. 2011;54(12):3055–61.

    CAS  PubMed  Google Scholar 

  21. Lelouvier B, Servant F, Païssé S, Brunet AC, Benyahya S, Serino M, et al. Changes in blood microbiota profiles associated with liver fibrosis in obese patients: A pilot analysis. Hepatology. 2016;64(6):2015–27.

    CAS  PubMed  Google Scholar 

  22. Koren O, Spor A, Felin J, Fåk F, Stombaugh J, Tremaroli V, et al. Human oral, gut, and plaque microbiota in patients with atherosclerosis. Proc Natl Acad Sci U S A. 2011;108(Suppl 1):4592–8.

    CAS  PubMed  Google Scholar 

  23. Lindskog Jonsson A, Hållenius FF, Akrami R, Johansson E, Wester P, Arnerlöv C, et al. Bacterial profile in human atherosclerotic plaques. Atherosclerosis. 2017;263:177–83.

    CAS  PubMed  Google Scholar 

  24. Fåk F, Tremaroli V, Bergström G, Bäckhed F. Oral microbiota in patients with atherosclerosis. Atherosclerosis. 2015;243(2):573–8.

    PubMed  Google Scholar 

  25. Hoyles L, Fernández-Real JM, Federici M, Serino M, Abbott J, Charpentier J, et al. Molecular phenomics and metagenomics of hepatic steatosis in non-diabetic obese women. Nat Med. 2018;24(7):1070–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Karlsson FH, Fåk F, Nookaew I, Tremaroli V, Fagerberg B, Petranovic D, et al. Symptomatic atherosclerosis is associated with an altered gut metagenome. Nat Commun. 2012;3:1245.

    PubMed  Google Scholar 

  27. Wilkins LJ, Monga M, Miller AW. Defining Dysbiosis for a cluster of chronic diseases. Sci Rep. 2019;9(1):12918.

    PubMed  PubMed Central  Google Scholar 

  28. Cani PD, Amar J, Iglesias MA, Poggi M, Knauf C, Bastelica D, et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes. 2007;56(7):1761–72 Epub 2007 Apr 24.

    CAS  PubMed  Google Scholar 

  29. Moreno-Navarrete JM, Escoté X, Ortega F, Serino M, Campbell M, Michalski MC, et al. A role for adipocyte-derived lipopolysaccharide-binding protein in inflammation- and obesity-associated adipose tissue dysfunction. Diabetologia. 2013;56(11):2524–37. https://doi.org/10.1007/s00125-013-3015-9.

    Article  CAS  PubMed  Google Scholar 

  30. Burcelin R. Gut microbiota and immune crosstalk in metabolic disease. Mol Metab. 2016;5(9):771–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Fatkhullina AR, Peshkova IO, Dzutsev A, Aghayev T, McCulloch JA, Thovarai V, et al. An Interleukin-23-Interleukin-22 Axis RegulatesIntestinal microbial homeostasis to protect from diet-induced atherosclerosis. Immunity. 2018;49(5):943–57.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Ivanov II, Atarashi K, Manel N, Brodie EL, Shima T, Karaoz U, et al. Induction of intestinal Th17 cells by segmented filamentous Bacteria. Cell. 2009. https://doi.org/10.1016/j.cell.2009.09.033.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Karbach SH, Schönfelder T, Brandão I, Wilms E, Hörmann N, Jäckel S, et al. Gut Microbiota Promote Angiotensin II-Induced Arterial Hypertension and Vascular Dysfunction. J Am Heart Assoc. 2016;5. https://doi.org/10.1161/JAHA.116.003698.

  34. Wilck N, Matus MG, Kearney SM, Olesen SW, Forslund K, Bartolomaeus H, et al. Salt-responsive gut commensal modulates TH17 axis and disease. Nature. 2017;551:585–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Weiss GA, Hennet T. Mechanisms and consequences of intestinal dysbiosis. Cell Mol Life Sci. 2017;74(16):2959–77.

    CAS  PubMed  Google Scholar 

  36. Rowland I, Gibson G, Heinken A, Scott K, Swann J, Thiele I, et al. Gut microbiota functions: metabolism of nutrients and other food components. Eur J Nutr. 2018;57(1):1–24.

    CAS  PubMed  Google Scholar 

  37. Wishart DS, Feunang YD, Marcu A, Guo AC, Liang K, Vázquez-Fresno R, et al. HMDB 4.0: the human metabolome database for 2018. Nucleic Acids Res. 2018;46(D1):D608–17.

    CAS  PubMed  Google Scholar 

  38. Abdul Rahim MBH, Chilloux J, Martinez-Gili L, Neves AL, Myridakis A, Gooderham N, et al. Diet-induced metabolic changes of the human gut microbiome: importance of short-chain fatty acids, methylamines and indoles. Acta Diabetol. 2019;56(5):493–500.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Lepper PM, Kleber ME, Grammer TB, Hoffmann K, Dietz S, Winkelmann BR, et al. Lipopolysaccharide-binding protein (LBP) is associated with total and cardiovascular mortality in individuals with or without stable coronary artery disease--results from the Ludwigshafen risk and cardiovascular health study (LURIC). Atherosclerosis. 2011;219(1):291–7.

    CAS  PubMed  Google Scholar 

  40. Krogh-Madsen R, Plomgaard P, Akerstrom T, Møller K, Schmitz O, Pedersen BK. Effect of short-term intralipid infusion on the immune response during low-dosebendotoxemia in humans. Am J Physiol Endocrinol Metab. 2008;294(2):E371–9.

    CAS  PubMed  Google Scholar 

  41. Gnauck A, Lentle RG, Kruger MC. The characteristics and function of bacterial lipopolysaccharides and their Endotoxic potential in humans. Int Rev Immunol. 2016;35(3):189–218.

    CAS  PubMed  Google Scholar 

  42. Wiedermann CJ, Kiechl S, Dunzendorfer S, Schratzberger P, Egger G, Oberhollenzer F, et al. Association of endotoxemia with carotid atherosclerosis and cardiovascular disease: prospective results from the Bruneck study. J Am Coll Cardiol. 1999;34(7):1975–81.

    CAS  PubMed  Google Scholar 

  43. Pussinen PJ, Pussinen PJ, Tuomisto K, Jousilahti P, Havulinna AS, Sundvall J, et al. Endotoxemia, immune response to periodontal pathogens, and systemic inflammation associate with incident cardiovascular disease events. Arterioscler Thromb Vasc Biol. 2007;27(6):1433–9.

    CAS  PubMed  Google Scholar 

  44. Szeto CC, Szeto CC, Kwan BC, Chow KM, Lai KB, Chung KY, et al. Endotoxemia is related to systemic inflammation and atherosclerosis in peritoneal dialysis patients. Clin J Am Soc Nephrol. 2008;3(2):431–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Cuaz-Pérolin C, Billiet L, Baugé E, Copin C, Scott-Algara D, Genze F, et al. Antiinflammatory and antiatherogenic effects of the NF-kappaB inhibitor acetyl-11-keto-beta-boswellic acid in LPS-challenged. Arterioscler Thromb Vasc Biol. 2008;28(2):272–7.

    PubMed  Google Scholar 

  46. Malik TH, Cortini A, Carassiti D, Boyle JJ, Haskard DO, Botto M. The alternative pathway is critical for pathogenic complement activation in endotoxin- and diet-induced atherosclerosis in low-density lipoprotein receptor-deficient mice. Circulation. 2010;122(19):1948–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Michelsen KS, Wong MH, Shah PK, Zhang W, Yano J, Doherty TM, et al. Lack of toll-like receptor 4 or myeloid differentiation factor 88 reduces atherosclerosis and alters plaque phenotype in mice deficient in apolipoprotein E. Proc Natl Acad Sci U S A. 2004;101(29):10679–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Shi H, Kokoeva MV, Inouye K, Tzameli I, Yin H, Flier JS. TLR4 links innate immunity and fatty acid-induced insulin resistance. J Clin Invest. 2006;116(11):3015–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Herieka M, Faraj TA, Erridge C. Reduced dietary intake of pro-inflammatory toll-like receptor stimulants favourably modifies markers of cardiometabolic risk in healthy men. Nutr Metab Cardiovasc Dis. 2016;26(3):194–200.

    CAS  PubMed  Google Scholar 

  50. Ghoshal S, Witta J, Zhong J, de Villiers W, Eckhardt E. Chylomicrons promote intestinal absorption of lipopolysaccharides. J Lipid Res. 2009;50(1):90–7.

    CAS  PubMed  Google Scholar 

  51. Erridge C, Attina T, Spickett CM, Webb DJ. A high-fat meal induces low-grade endotoxemia: evidence of a novel mechanism of postprandial inflammation. Am J Clin Nutr. 2007;86(5):1286–92.

    CAS  PubMed  Google Scholar 

  52. Niebauer J, Volk HD, Kemp M, Dominguez M, Schumann RR, Rauchhaus M, et al. Endotoxin and immune activation in chronic heart failure: a prospective cohort study. Lancet. 1999;353(9167):1838–42.

    CAS  PubMed  Google Scholar 

  53. CCani PD, Possemiers S, Van de Wiele T, Guiot Y, Everard A, Rottier O, et al. Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability. Gut. 2009;58(8):1091–103.

    Google Scholar 

  54. Burcelin R, Serino M, Chabo C, Garidou L, Pomié C, Courtney M, et al. Metagenome and metabolism: the tissue microbiota hypothesis. Diabetes Obes Metab. 2013;15(Suppl 3):61–70.

    CAS  PubMed  Google Scholar 

  55. Amar J, Chabo C, Waget A, Klopp P, Vachoux C, Bermúdez-Humarán LG, et al. Intestinal mucosal adherence and translocation of commensal bacteria at the early onset of type 2 diabetes: molecular mechanisms and probiotic treatment. EMBO Mol Med. 2011;3(9):559–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Amar J, Lange C, Payros G et al (2013) Blood microbiota dysbiosis is associated with the onset of cardiovascular events in a large general populati- on: the D.E.S.I.R. study. PLoS ONE 8:e54461. https://doi.org/10.1371/journal.pone.0054461.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Brown JM, Hazen SL. Microbial modulation of cardiovascular disease. Nat Rev Microbiol. 2018;16(3):171–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Koeth RA, Wang Z, Levison BS, Buffa JA, Org E, Sheehy BT, et al. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med. 2013;19(5):576–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Organ CL, Otsuka H, Bhushan S, Wang Z, Bradley J, Trivedi R, et al. Choline diet and its gut microbe-derived metabolite, Trimethylamine N-oxide, exacerbate pressure overload-induced heart failure. Circ Heart Fail. 2016;9(1):e002314.

    CAS  PubMed  Google Scholar 

  60. Wang Z, Klipfell E, Bennett BJ, Koeth R, Levison BS, Dugar B, et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature. 2011;472(7341):57–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Warrier M, Shih DM, Burrows AC, Ferguson D, Gromovsky AD, Brown AL, et al. The TMAO-generating enzyme Flavin Monooxygenase 3 is a central regulator of cholesterol balance. Cell Rep. 2015;10(3):326–38.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Zhu W, Gregory JC, Org E, Buffa JA, Gupta N, Wang Z, et al. Gut microbial metabolite TMAO enhances platelet Hyperreactivity and thrombosis risk. Cell. 2016;165(1):111–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Wang Z, Roberts AB, Buffa JA, Levison BS, Zhu W, Org E, et al. Non-lethal inhibition of gut microbial Trimethylamine production for the treatment of atherosclerosis. Cell. 2015;163(7):1585–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Vital M, Penton CR, Wang Q, Young VB, Antonopoulos DA, Sogin ML, et al. A gene-targeted approach to investigate the intestinal butyrate-producing bacterial community. Microbiome. 2013;1(1):8.

    PubMed  PubMed Central  Google Scholar 

  65. Bolognini D, Tobin AB, Milligan G, Moss CE. The pharmacology and function of receptors for short-chain fatty acids. Mol Pharmacol. 2016;89(3):388–98.

    CAS  PubMed  Google Scholar 

  66. Kasahara K, Krautkramer KA, Org E, Romano KA, Kerby RL, Vivas EI, et al. Interactions between Roseburia intestinalis and diet modulate atherogenesis in a murine model. Nat Microbiol. 2018;3(12):1461–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Marques FZ, Nelson E, Chu PY, Horlock D, Fiedler A, Ziemann M, et al. High-Fiber diet and acetate supplementation change the gut microbiota and prevent the development of hypertension and heart failure in hypertensive mice. Circulation. 2017;135(10):964–77.

    CAS  PubMed  Google Scholar 

  68. Pedersen HK, Gudmundsdottir V, Nielsen HB, Hyotylainen T, Nielsen T, Jensen BA, et al. Human gut microbes impact host serum metabolome and insulin sensitivity. Nature. 2016;535(7612):376–81.

    CAS  PubMed  Google Scholar 

  69. Cheng S, Rhee EP, Larson MG, Lewis GD, McCabe EL, Shen D, et al. Metabolite profiling identifies pathways associated with metabolic risk in humans. Circulation. 2012;125(18):2222–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Jang C, Oh SF, Wada S, Rowe GC, Liu L, Chan MC, Rhee J, Hoshino A, Kim B, Ibrahim A, Baca LG, Kim E, Ghosh CC, Parikh SM, Jiang A, Chu Q, Forman DE, Lecker SH, Krishnaiah S, Rabinowitz JD, Weljie AM, Baur JA, Kasper DL, Arany Z. A branched-chain amino acid metabolite drives vascular fatty acid transport and causes insulin resistance. Nat Med. 2016;22(4):421–6. https://doi.org/10.1038/nm.4057.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Tobias DK, Lawler PR, Harada PH, Demler OV, Ridker PM, Manson JE, et al. Circulating branched-chain amino acids and incident cardiovascular disease in a prospective cohort of US women. Circ Genom Precis Med. 2018;11(4):e002157.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Jang C, Oh SF, Wada S, Rowe GC, Liu L, Chan MC, et al. A branched-chain amino acid metabolite drives vascular fatty acid transport andcauses insulin resistance. Nat Med. 2016;22(4):421–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Dodd D, Spitzer MH, Van Treuren W, Merrill BD, Hryckowian AJ, Higginbottom SK, et al. A gut bacterial pathway metabolizes aromatic amino acids into nine circulating metabolites. Nature. 2017;551(7682):648–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Venkatesh M, Mukherjee S, Wang H, Li H, Sun K, Benechet AP, et al. Symbiotic bacterial metabolites regulate gastrointestinal barrier function via the xenobiotic sensor PXR and toll-like receptor 4. Immunity. 2014;41(2):296–310.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Tuomainen M, Lindström J, Lehtonen M, Auriola S, Pihlajamäki J, Peltonen M, et al. Associations of serum indolepropionic acid, a gut microbiota metabolite, with type 2 diabetes and low-grade inflammation in high-risk individuals. Nutr Diabetes. 2018 May;8(1):35.

    PubMed  PubMed Central  Google Scholar 

  76. de Mello VD, Paananen J, Lindström J, Lankinen MA, Shi L, Kuusisto J, et al. Indolepropionic acid and novel lipid metabolites are associated with a lower risk of type 2 diabetes in the Finnish diabetes prevention study. Sci Rep. 2017;7:46337.

    PubMed  PubMed Central  Google Scholar 

  77. Cason CA, Dolan KT, Sharma G, Tao M, Kulkarni R, Helenowski IB, et al. Plasma microbiome-modulated indole- and phenyl-derived metabolites associate with advanced atherosclerosis and postoperative outcomes. J Vasc Surg. 2018;68(5):1552–1562.e7. https://doi.org/10.1016/j.jvs.2017.09.029.

    Article  PubMed  Google Scholar 

  78. Heath-Pagliuso S, Rogers WJ, Tullis K, Seidel SD, Cenijn PH, Brouwer A, Denison MS. Activation of the Ah receptor by tryptophan and tryptophan metabolites. Biochemistry. 1998;37(33):11508–15.

    CAS  PubMed  Google Scholar 

  79. Laurans L, Venteclef N, Haddad Y, Chajadine M, Alzaid F, Metghalchi S, et al. Genetic deficiency of indoleamine 2,3-dioxygenase promotes gutmicrobiota-mediated metabolic health.Nat Med. 2018;24:1113–20. https://doi.org/10.1038/s41591-018-0060-4.

    CAS  PubMed  Google Scholar 

  80. Eussen SJPM, Ueland PM, Vollset SE, Nygård O, Midttun Ø, Sulo G, et al. Kynurenines as predictors of acute coronary events in the Hordaland health study. Int J Cardiol. 2015. https://doi.org/10.1016/j.ijcard.2015.03.413.

    PubMed  Google Scholar 

  81. Gutiérrez-Díaz I, Fernández-Navarro T, Salazar N, Bartolomé B, Moreno-Arribas MV, López P, et al. Could fecal Phenylacetic and Phenylpropionic acids be used as indicators of health status? J Agric Food Chem. 2018;66(40):10438–46.

    PubMed  Google Scholar 

  82. Lin CJ, Wu V, Wu PC, Wu CJ. Meta-analysis of the associations of p-Cresyl sulfate (PCS) and Indoxyl sulfate (IS) with cardiovascular events and all-cause mortality in patients.

  83. Opdebeeck B, Maudsley S, Azmi A, De Maré A, De Leger W, Meijers B, et al. Indoxyl sulfate and p-Cresyl sulfate promote vascular calcification and associate with glucose intolerance. J Am Soc Nephrol. 2019;30(5):751–66.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Kurilshikov A, van den Munckhof ICL, Chen L, Bonder MJ, Schraa K, Rutten JHW, et al. Van Faassen M; LifeLines DEEP cohort study, BBMRI metabolomics consortium, Slagboom PE, Xavier RJ, Kuipers F, Hofker MH, Wijmenga C, Netea MG, Zhernakova A, Fu J. gut microbial associations to plasma metabolites linked to cardiovascular phenotypes and risk. Circ Res. 2019;124(12):1808–20.

    CAS  PubMed  Google Scholar 

  85. Ridlon JM, Kang DJ, Hylemon PB. Bile salt biotransformations by human intestinal bacteria. J Lipid Res. 2006;47(2):241–59.

    CAS  PubMed  Google Scholar 

  86. Chávez-Talavera O, Tailleux A, Lefebvre P, Staels B. Bile acid control of metabolism and inflammation in obesity, type 2 diabetes, dyslipidemia, and nonalcoholic fatty liver disease. Gastroenterology. 2017;152(7):1679–94.

    PubMed  Google Scholar 

  87. Jadhav K, Xu Y, Xu Y, Li Y, Xu J, Zhu Y, et al. Reversal of metabolic disorders by pharmacological activation of bile acid receptors TGR5 and FXR. Mol Metab. 2018;9:131–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Alonso A, Yu B, Sun YV, Chen LY, Loehr LR, O'Neal WT, et al. Serum metabolomics and incidence of atrial fibrillation (from the atherosclerosis risk in communities study). Am J Cardiol. 2019;123(12):1955–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Mayerhofer CCK, Ueland T, Broch K, Vincent RP, Cross GF, Dahl CP, et al. Increased secondary/primary bile acid ratio in chronic heart failure. J Card Fail. 2017;23(9):666–71.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

M.F. laboratory was in part funded by Ministry of University (MIUR) Progetti di Ricerca di Interesse Nazionale (PRIN) [protocol number 2015MPESJS_004 and 2017FM74HK].B.A.K. was supported by a grants from the Deutsche Stiftung für Herzforschung (DSHF)[F-43-16] and RWTH Aachen University (START grant).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimo Federici.

Ethics declarations

Conflict of interest

M.F. is co-inventor on pending patents held by INSERM Transfert, INSERM, University of Rome Tor Vergata, University of Girona and Imperial College on NAFLD diagnostics and has the right to receive royalty payments for inventions or discoveries related to NAFLD diagnostics.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kappel, B.A., Federici, M. Gut microbiome and cardiometabolic risk. Rev Endocr Metab Disord 20, 399–406 (2019). https://doi.org/10.1007/s11154-019-09533-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11154-019-09533-9

Keywords

Navigation