Skip to main content

Advertisement

Log in

Negative price spikes at power markets: the role of energy policy

  • Original Article
  • Published:
Journal of Regulatory Economics Aims and scope Submit manuscript

Abstract

In Germany, substantial drops in wholesale power prices have become a regular phenomenon. While such price drops have far-reaching implications for the functioning of the power market, their underlying determinants remain poorly understood. To fill this gap, we propose a Markov regime-switching model to investigate low-price events at the European Power Exchange. Our analysis focuses on the role of energy policies that promote renewable energies and have led to significant reductions of nuclear capacities after the Fukushima accident. We find that high electricity infeed from renewable sources increases negative price spike probabilities, while the decommissioning of nuclear plants under the Nuclear Moratorium had an opposing effect. Simulations of market outcomes under different energy policies indicate that reaching ambitious renewable energy targets increases the frequency of low-price events and compromises the financial viability of conventional generation units, while a nuclear phase-out or an increase in storage capacities mitigates these effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. Cf. http://www.epexspot.com/en/.

  2. Data on the coal prices (API 2 index) was obtained using Thomson Reuters Datastream. As the API 2 index is not given for weekends, the values for weekend days are calculated as the average of the preceeding Friday and the succeeding Monday.

  3. Cf. https://www.entsoe.eu/resources/data-portal/consumption.

  4. Cf. http://www.transparency.eex.com/de/.

  5. http://www.50hertz.com/de/152.htm, http://www.amprion.net/bilanzkreis-eeg, http://www.transpower.de/site/Transparenz/veroeffentlichungen/netzkennzahlen/, http://transnet-bw.de/kennzahlen/erneuerbare-energien/windeinspeisung/.

  6. As initial values for the filter inferences we assume \((0.5 , 0.5)'\) for period 1. For the starting value needed to approximate the latent \(p_{t-1}^b\), we set \(E(p_{1}^b)= \mu _1\). To avoid non-defined functional values, we reparameterize the parameters \(\theta \), \(\sigma ^b\) and \(\sigma ^l\). As the log-likelihood function turns out to have multiple local maxima, we randomly draw 50 starting values for the estimation routine and choose the coefficient estimates that lead to the highest log-likelihood.

  7. Using the functional form as displayed in Eq. (1), such changes in residual load can be calculated as: \(\Delta resload_t = (\hat{c}_b/\hat{b}_b) \cdot (nuclear_{af}-nuclear_{be})\), where \(nuclear_{af}\) (\(nuclear_{be}\)) corresponds to the average nuclear capacities after (before) the Nuclear Moratorium and \(\hat{c}_b\) and \(\hat{b}_b\) correspond to the estimates of the respective model parameters.

  8. Variable cost are composed of fuel cost, \(\text {CO}_2\) emission cost and operations and maintenance cost (O&M). For hard coal-fired power plants with 1970 (2010) technology we assume (Klaus et al. 2009; IFEU 2007): heat rates of 36% (46%), specific \(\text {CO}_2\) emission rates of 0.939 t/MWh (0.735 t/MWh), O&M cost of 1 EUR/MWh as well as coal prices (API 2) as introduced in Table 1. For lignite-fired power plants with 1970 (2010) technology we assume (Klaus et al. 2009; BKartA 2011): heat rates of 36% (46%), specific \(\text {CO}_2\) emission rates of 1.263 t/MWh (0.940 t/MWh), combined fuel and O&M cost of 10 EUR/MWh (4 EUR/MWh). As the \(\text {CO}_2\) emission price, we use the price of carbon emission futures due in December 2016 (CFI2Z6).

References

  • Andor, M., Flinkerbusch, K., Janssen, M., Libeau, B., & Wobben, M. (2010). Negative Strompreise und der Vorrang Erneuerbarer Energien. Zeitschrift für Energiewirtschaft, 34, 91–99.

    Article  Google Scholar 

  • Andor, M., & Voss, A. (2016). Optimal renewable-energy promotion: Capacity subsidies vs. generation subsidies. Resource and Energy Economics, 45, 144–158.

    Article  Google Scholar 

  • Bierbrauer, M., Menn, C., Rachev, S. T., & Trück, S. (2007). Spot and derivative pricing in the EEX power market. Journal of Banking & Finance, 31(11), 3462–3485.

    Article  Google Scholar 

  • BKartA. (2011). Sektoruntersuchung Stromerzeugung Großhandel. Bundeskartellamt. http://www.bundeskartellamt.de.

  • BNetzA. (2016). Kraftwerksliste. Bundesnetzagentur. http://www.bundesnetzagentur.de.

  • BRD. (2010). Energiekonzept. Bundesregierung. http://www.bmu.de/files/pdfs/allgemein/application/pdf/energiekonzept_bundesregierung.pdf.

  • Diebold, F. X., Lee, J.-H., & Weinbach, G. (1994). Regime switching with time-varying transition probabilities. In C. Hargreaves (Ed.), Nonstationary time series analysis and cointegration (pp. 283–302). Oxford: Oxford University Press.

    Google Scholar 

  • Dunn, B., Kamath, H., & Tarascon, J.-M. (2011). Electrical energy storage for the grid: A battery of choices. Science, 334(6058), 928–935.

    Article  Google Scholar 

  • Ethier, R., Mount, T. D. (1998). Estimating the volatility of spot prices in restructured electricity markets and the implications for option values. PSERC working paper series 31. http://www.pserc.wisc.edu/documents/publications/papers/1998_general_publications/pserc_31.pdf.

  • Hamilton, J. D. (1994). Time series analysis. Cambridge: Cambridge University Press.

    Google Scholar 

  • Higgs, H., & Worthington, A. (2008). Stochastic price modeling of high volatility, mean-reverting, spike-prone commodities: The Australian wholesale spot electricity market. Energy Economics, 30(6), 3172–3185.

    Article  Google Scholar 

  • Huisman, R. (2008). The influence of temperature on spike probability in day-ahead power prices. Energy Economics, 30(5), 2697–2704.

    Article  Google Scholar 

  • Huisman, R., Huurman, C., & Mahieu, R. (2007). Hourly electricity prices in day-ahead markets. Energy Economics, 29(2), 240–248.

    Article  Google Scholar 

  • Huisman, R., & Jong, C. (2003). Option pricing for power prices with spikes. Energy & Power Risk Management, 7(11), 12–16.

    Google Scholar 

  • Huisman, R., & Mahieu, R. (2003). Regime jumps in electricity prices. Energy Economics, 25(5), 425–434.

    Article  Google Scholar 

  • IFEU. (2007). Das Steinkohle-Kraftwerk Hamburg Moorburg und seine Alternativen. Institut für Energie- und Umweltforschung. http://www.ifeu.de.

  • Janczura, J., & Weron, R. (2010). An empirical comparison of alternate regime-switching models for electricity spot prices. Energy Economics, 32(5), 1059–1073.

    Article  Google Scholar 

  • Janczura, J., & Weron, R. (2011). Efficient estimation of Markov regime-switching models: An application to electricity spot prices. Advances in Statistical Analysis, 96(3), 385–407.

    Article  Google Scholar 

  • Jeon, W., Lamadrid, A., Mo, J., & Mount, T. (2015). Using deferrable demand in a smart grid to reduce the cost of electricity for customers. Journal of Regulatory Economics, 47(3), 239–272.

    Article  Google Scholar 

  • Jong, C. (2006). The nature of power spikes: A regime-switch approach. Studies in Nonlinear Dynamics and Econometrics, 10(3), 1–28.

    Article  Google Scholar 

  • Kim, C.-J. (1994). Dynamic linear models with Markov-switching. Journal of Econometrics, 60(1–2), 1–22.

    Article  Google Scholar 

  • Klaus, T., Loreck, C., & Müschen, K. (2009). Klimaschutz und Versorgungssicherheit: Entwicklung einer nachhaltigen Stromversorgung. Climate Change, 9(13), 1–94.

    Google Scholar 

  • Knittel, C. R., & Roberts, M. R. (2005). An empirical examination of restructured electricity prices. Energy Economics, 27(5), 791–817.

    Article  Google Scholar 

  • Kosater, P., & Mosler, K. (2006). Can Markov regime-switching models improve power-price forecasts? Evidence from german daily power prices. Applied Energy, 83(9), 943–958.

    Article  Google Scholar 

  • Mount, T. D., Maneevitjit, S., Lamadrid, A. J., Zimmerman, R. D., & Thomas, R. J. (2012). The hidden system costs of wind generation in a deregulated electricity market. Energy Journal, 33(1), 161–186.

    Article  Google Scholar 

  • Mount, T. D., Ning, Y., & Cai, X. (2006). Predicting price spikes in electricity markets using a regime-switching model with time-varying parameters. Energy Economics, 28(1), 62–80.

    Article  Google Scholar 

  • Nicolosi, M. (2010). Wind power integration and power system flexibility—An empirical analysis of extreme events in germany under the new negative price regime. Energy Policy, 38(11), 7257–7268.

    Article  Google Scholar 

  • Weron, R. (2009). Heavy-tails and regime-switching in electricity prices. Mathematical Methods of Operations Research, 69(3), 457–473.

    Article  Google Scholar 

  • Weron, R., Bierbrauer, M., & Trück, S. (2004). Modeling electricity prices: Jump diffusion and regime switching. Physica A, 336(1/2), 39.

    Article  Google Scholar 

  • Zachmann, G. (2013). A stochastic fuel switching model for electricity prices. Energy Economics, 35, 5–13.

    Article  Google Scholar 

Download references

Acknowledgements

The author thanks Mark Andor, Colin Vance and, in particular, Manuel Frondel as well as two anonymous reviewers for very helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Gerster.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 187 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gerster, A. Negative price spikes at power markets: the role of energy policy. J Regul Econ 50, 271–289 (2016). https://doi.org/10.1007/s11149-016-9311-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11149-016-9311-9

Keywords

JEL Classification

Navigation