Skip to main content
Log in

Influence of Hardening Additives on the Characteristics of the Tribological TiC–Al2O3 Ceramic Composite Obtained by SHS

  • Published:
Refractories and Industrial Ceramics Aims and scope

Addition of various reinforcements was studied in an attempt to produce a TiC–Al2O3 composite with high density, homogeneous microstructure, and outstanding mechanical properties for use in aggressive media using self-propagating high-temperature synthesis (SHS). Ductile Ni-metal powder (5 – 20 wt.%) and Al2O3 and ZrO2 (1 mole fraction) dilutions with and without Ni addition were introduced into TiC–Al2O3 composite synthesized by combined SHS and direct consolidation (DC). The influence of the Ni content and dilution with Al2O3 and ZrO2 on the phase composition, densification behavior, microstructure, and mechanical properties of the synthesized TiC–Al2O3 composite was investigated. The best results were obtained by adding Ni(5 wt.%) to the TiC–Al2O3 composite. However, the chemical reactions between the starting precursors were disturbed and the composite characteristics worsened if the Ni content was increased to >5 wt.%. Accordingly, addition of 5 wt.% Ni was suggested to produce a highly dense TiC–Al2O3 composite with a homogenized morphology and unparalleled mechanical properties. Moreover, the produced composites could be used successfully in aggressive media and tribological applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. L. J. Kecskes, A. Niller, T. Kottke, K. V. Logan, and G. R. Villalobos, “Dynamic consolidation of combustion-synthesized alumina–titanium diboride composite ceramics,” J. Am. Ceram. Soc., 79, 2687 – 2695 (1996).

    Article  CAS  Google Scholar 

  2. Y. G. Elazar and I. Gotman, “Dense high-temperature ceramics by thermal explosion under pressure,” J. Eur. Ceram. Soc., 19, 2381 – 2393 (1999).

    Article  Google Scholar 

  3. D. S. Mao and J. Li, “Mechanical properties and fracture behaviour of Al2O3–TiC–Co advanced ceramics,” J. Mater. Sci. Lett., 16, 537 – 540 (1997).

    Article  CAS  Google Scholar 

  4. R. P. Wahi and B. Ilschner, “Fracture behaviour of composites based on Al2O3–TiC,” J. Mater. Sci., 15, 875 – 885 (1980).

    Article  CAS  Google Scholar 

  5. A. Goldstein and A. Singurindi, “Al2O3/TiC based metal cutting tools by microwave sintering followed by hot isostatic pressing,” J. Am. Ceram. Soc., 83, 1530 – 1532 (2004).

    Article  Google Scholar 

  6. J. T. Horng, N. M. Liu, and K. T. Chiang, J. Mater. Process. Technol., 532 – 541 (2008).

  7. A. S. Kumar, A. R. Durai, and T. Sornakumar, Int. J. Refract. Met. Hard Mater., 21, 109 – 117 (2003).

    Article  Google Scholar 

  8. M. V. Grigoryev, et al., “Microstructure, mechanical properties and machining performance of hot-pressed Al2O3–ZrO2–TiC composites,” IOP Conf. Ser.: Mater. Sci. Eng., 116, 012002 (2013).

    Article  Google Scholar 

  9. M. Lee and M. P. Borom, “Rapid rate sintering of Al2O3–TiC composites for cutting-tool applications,” Adv. Ceram. Mater., 3, 38 – 44 (1988).

    Article  CAS  Google Scholar 

  10. R. P. Wahi and B. Ilschner, “Fracture behaviour of composites based on Al2O3–TiC,” J. Mater. Sci., 15, 875 – 885 (1980).

    Article  CAS  Google Scholar 

  11. T. Nagano, H. Kato, and F. Wakai, “Deformation of alumina/titanium carbide composite at elevated temperatures,” J. Am. Ceram. Soc., 74(9), 2258 – 2262 (1991).

    Article  CAS  Google Scholar 

  12. S. V. Gedevanishvili and Z. A. Munir, “Field-assisted combustion synthesis of MoSi2–SiC composites,” Scr. Metall. Mater., 31, 741 – 743 (1994).

    Article  CAS  Google Scholar 

  13. H. Xue and Z. A. Munir, “Extending the compositional limit of combustion-synthesized B4C–TiB2 composites by field activation,” Metall. Mater. Trans. B, 27, 475 – 480 (1996).

    Article  Google Scholar 

  14. H. C. Yi and J. J. Moore, “Self-propagating high-temperature (combustion) synthesis (SHS) of powder-compacted materials,” J. Mater. Sci., 25, 1159 – 1168 (1990).

    Article  CAS  Google Scholar 

  15. S. Gedevanishvili and Z. A. Munir, “Field-activated combustion synthesis in the Nb–Si system,” Mater. Sci. Eng., A, 211, 1 – 9 (1996).

    Article  Google Scholar 

  16. D. A. Hoke, D. K. Kim, J. C. LaSalvia, and M. A. Meyers, “Combustion synthesis/dynamic densification of a TiB2–SiC composite,” J. Am. Ceram. Soc., 79, 177 – 182 (1996).

    Article  CAS  Google Scholar 

  17. Y. M. Z. Ahmed, Z. I. Zaki, R. K. Bordia, D. H. A. Besisa, and A. M. M. Amin, “Simultaneous synthesis and sintering of TiC/Al2O3 composite via self propagating synthesis with direct consolidation technique,” Ceram. Int., 42(15), 16589 – 16597 (2016).

    Article  CAS  Google Scholar 

  18. L. Wang, M. R. Wixom, and L. T. Thompson, “Structural and mechanical properties of TiB2 and TiC prepared by self-propagating high-temperature synthesis/dynamic compaction,” J. Mater. Sci., 29, 534 – 543 (1994).

    Article  CAS  Google Scholar 

  19. H. J. Feng, J. J. Moore, and D. G.Wirth, “Combustion synthesis of ceramic-metal composites materials: the TiC–Al2O3–Al system,” Metall. Trans. A, 23, 2373 – 2379 (1992).

    Article  Google Scholar 

  20. A. Chakraborty, S. V. Kamat, R. Mitra, and K. K. Ray, “Effect of MoSi2 and Nb reinforcements on mechanical properties of Al2O3 matrix composites,” J. Mater. Sci., 35, 3827 – 3835 (2000).

    Article  CAS  Google Scholar 

  21. W. G. Fahrenholtz, D. T. Ellerby, and R. E. Loehman, “Al2O3–Ni composites with high strength and fracture toughness,” J. Am. Ceram. Soc., 83, 1279 – 1280 (2000).

    Article  CAS  Google Scholar 

  22. B. D. Flinn, M. Ruhle, and A. G. Evans, “Toughening in composites of Al2O3 reinforced with Al,” Acta Metall., 37, 3001 – 3006 (1989).

    Article  CAS  Google Scholar 

  23. S. Kasuriya and D. Atong, “The effect of MgO–Y2O3 on Al2O3–TiC composites,” Mater. Sci. Forum, 534 – 536, 605 – 608 (2007).

  24. R. Kumar, A. K. Chaubey, T. Maity, and K. G. Prashanth, “Mechanical and tribological properties of Al2O3–TiC composite fabricated by spark plasma sintering process with metallic (Ni, Nb) binders,” Metals, 8(50), 1 – 12 (2018).

    Google Scholar 

  25. Y. M. Z. Ahmed, Z. I. Zakia, D. H. A. Besisa, A. M. M. Amin, and R. K. Bordia, “Effect of zirconia and iron on the mechanical properties of Al2O3/TiC composites processed using combined self-propagating synthesis and direct consolidation technique,” Mater. Sci. Eng., A, 696, 182 – 189 (2017).

    Article  CAS  Google Scholar 

  26. K. Otani, K. Hattori, H. Muraoka, H. Kawazoe, and S. Tsuruta, “Development of ultraheavy gauge (210 mm thick) 800 N/mm2 tensile strength plate steel for racks and jack-up rigs,” Nippon Steel Tech. Rep., 58, 292 (1993).

    Google Scholar 

  27. J. Matsushita, H. Nagashima, and H. Saito, “Preparation and mechanical properties of TiB2 composites containing Ni and C,” J. Ceram. Soc. Jpn., 99, 78 (1991).

    Article  CAS  Google Scholar 

  28. G. J. Zhang, Z. Z. Jin, and X. M. Yue, “Effects of Ni addition on mechanical properties of TiB2/SiC composites prepared by reactive hot pressing (RHP),” J. Mater. Sci., 32, 2093 – 2097 (1997).

    Article  CAS  Google Scholar 

  29. Y. Choi and S. Rhee, “Effect of precursors on the combustion synthesis of TiC–Al2O3 composite,” J. Mater. Res., 9(7), 1761 – 1766 (1994).

    Article  CAS  Google Scholar 

  30. M. Fukuhara, K. Fukazawa, and A. Fukawa, “Physical properties and cutting performance of silicon nitride ceramic,” Wear, 102, 195 – 210 (1985).

    Article  CAS  Google Scholar 

  31. D. A. Jerebtsov, G. G. Mikhailov, and S. V. Sverdina, “Phase diagram of the system: Al2O3–ZrO2,” Ceram. Int., 26, 821 – 823 (2000).

    Article  CAS  Google Scholar 

  32. G. Liu, J. Li, and K. Chen, “One-step preparation of dense TiC1–xNx–Ni3Ti cermet by combustion synthesis,” Mater. Des., 87, 6 – 9 (2015).

    Article  CAS  Google Scholar 

  33. F. Qiu, R. Zuo, S.-L. Shu, Y.-W.Wang, and Q.-C. Jiang, “Effect of Al addition on the microstructures and compression properties of (TiCxNy–TiB2)/Ni composites fabricated by combustion synthesis and hot press” Powder Technol., 286, 716 – 721 (2015).

    Article  CAS  Google Scholar 

  34. J. W. McCauley, N. D. Corbin, T. Resetar, and P. Wong,”Simultaneous preparation and self-sintering of materials in the system Ti–B–C,” Ceram. Eng. Sci. Proc., 3, 538 – 554 (1982).

    Article  CAS  Google Scholar 

  35. R. A. Cutter, A. C. Hurford, and A. V. Virkar, “Pressurelesssintered Al2O3–TiC composites” Mater. Sci. Eng., A, 105 – 106, Part 1, 183 – 192 (1988).

  36. X. Sun and J. Yeomans, “Optimization of a ductile-particle- toughened ceramic” J. Am. Ceram. Soc., 79, 2705 – 2717 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge support for this work from US National Science Foundation Grant No. 0612063 and Science and Technology Development Fund (STDF), Egypt, Grant No. 323.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. H. A. Besisa.

Additional information

Translated from Novye Ogneupory, No. 9, pp. 47 – 55, September, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Besisa, D.H.A., Zaki, Z.I., Amin, A.M.M. et al. Influence of Hardening Additives on the Characteristics of the Tribological TiC–Al2O3 Ceramic Composite Obtained by SHS. Refract Ind Ceram 61, 528–535 (2021). https://doi.org/10.1007/s11148-021-00515-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11148-021-00515-6

Keywords

Navigation