Skip to main content

Advertisement

Log in

Impact of alumina powder bed on hardness and fracture toughness in the sintering process of NiO-GDC-Bi2O3 composite prepared by sol-gel method

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

This study explores the sintering process of NiO–Ce0.9Gd0.1O1.95 + 35 wt% Bi2O3 ceramic composites synthesized via the sol-gel method, with a focus on the influence of an alumina powder bed during sintering. Uniaxially pressed disks were sintered at 890 °C for varying durations (0, 12, 24, and 61 h), with an additional disc sintered at 1450 °C for 6 h for comparative analysis. Sintering processes employed alumina as a powder bed, and subsequent evaluation included hardness and fracture toughness assessments. Relative densities of 53% and 48% were achieved for composites sintered at 890 and 1450 °C, respectively. The maximum hardness of 4.13 ± 0.13 GPa was attained by the composite sintered at 890 °C for 61 h, while the highest fracture toughness (2.98 ± 0.35 MPa.m1/2) was observed in the composite sintered at 1450 °C for 6 h. Evidence indicates that an interaction between Bi2O3 and the alumina bed occurred, adversely affecting the mechanical properties by promoting the depletion of Bi2O3, especially at elevated sintering temperatures.

Graphical Abstract

The transversal gradient of bismuth content (at%) by EDX analysis in each of the four zones corresponds to one-half of each sample sintered at 890 and 1450 °C. Z1, Z2, and Z3 are lower, middle, and upper transverse zone, respectively. Z4 corresponds to the “as sintered” surface in contact with the alumina powder bed during sintering.

Highlights

  • Alumina bed powder can be harmful for sintering NiO-GDC-Bi2O3 composite.

  • High content of Bi2O3 into NiO-GDC affects fracture toughness and Vickers hardness.

  • Weight loss of Bi2O3 was more critical at a sintering temperature of 1450 °C.

  • After sintering, almost the totality of Bi2O3 was absorbed by the alumina powder bed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References

  1. Lim Y, Lee H, Park J, Kim JB (2022) Low-temperature constrained sintering of YSZ electrolyte with Bi2O3 sintering sacrificial layer for anode-supported solid oxide fuel cells. Ceram Int 48:9673–9680. https://doi.org/10.1016/j.ceramint.2021.12.168

    Article  CAS  Google Scholar 

  2. Choudhury A, Chandra H, Arora A (2013) Application of solid oxide fuel cell technology for power generation-a review. Renew Sustain Energy Rev 20:430–442. https://doi.org/10.1016/j.rser.2012.11.031

    Article  CAS  Google Scholar 

  3. Singhal SC (2000) Advances in solid oxide fuel cell technology. Solid State Ion 135:305–313. https://doi.org/10.1016/S0167-2738(00)00452-5

    Article  CAS  Google Scholar 

  4. Batool R, Gill R, Altaf F, Ahmad MA, Raza R, Khan MA, Hussain F, Rehman Z, Abbas G (2019) Structural and electrochemical study of Ba0.15Cu0.15Ni0.10Zn0.60 oxide anodes for low temperature solid oxide fuel cell. J Alloy Compd 780:653–659. https://doi.org/10.1016/j.jallcom.2018.11.392

    Article  CAS  Google Scholar 

  5. Wang W, Su C, Wu Y, Ran R, Shao Z (2013) Progress in solid oxide fuel cells with nickel-based anodes operating on methane and related fuels. Chem Rev 113:8104–8151. https://doi.org/10.1021/cr300491e

    Article  CAS  PubMed  Google Scholar 

  6. Atkinson A, Bamett S, Gorte R, Irvine J, McEvoy A, Mogensen M, Singhal S, Vohs J (2004) Advanced anodes for high-temperature fuel cells. Nat Mater 3:17–27. https://doi.org/10.1038/nmat1040

    Article  CAS  PubMed  Google Scholar 

  7. Shao Z, Haile SM (2004) A high-performance cathode for the next generation of solid oxide fuel cells. Nature 431:170–173. https://doi.org/10.1038/nature02863

    Article  CAS  PubMed  Google Scholar 

  8. Jaiswal N, Tanwar K, Suman R, Kumar D, Upadhyay S, Parkash O (2019) A brief review on ceria based solid electrolytes for solid oxide fuel cells. J Alloy Compd 781:984–1005. https://doi.org/10.1016/j.jallcom.2018.12.015

    Article  CAS  Google Scholar 

  9. Fu C, Ge X, Chan SH, Liu Q (2012) Fabrication and characterization of anode-supported low-temperature SOFC based on Gd-Doped Ceria electrolyte. Fuel Cells 12:450–456. https://doi.org/10.1002/fuce.201100142

    Article  CAS  Google Scholar 

  10. Steel BCH (2000) Appraisal of Ce1-y Gdy O2-y/2 electrolytes for IT-SOFC operation 500 oC. Solid State Ion 129:95–110. https://doi.org/10.1016/s0167-2738(99)00319-7

    Article  Google Scholar 

  11. Ghamari Arbati S, Ranjbar M, Babaei A (2022) Nickel oxide-gadolinium doped ceria synthesized by new methods as anodes material for solid oxide fuel cells. Iran J Hydrog Fuel Cell 9:133–147. https://doi.org/10.22104/ijhfc.2022.5797.1242

    Article  CAS  Google Scholar 

  12. Mangalaraja RV, Ananthakumar S, Uma K, Jiménez RM, López M, Camurri CP (2009) Microhardness and fracture toughness of Ce0.9 Gd0.1 O 1.95 for manufacturing solid oxide electrolytes. Mater Sci Eng A 517:91–96. https://doi.org/10.1016/j.msea.2009.03.046

    Article  CAS  Google Scholar 

  13. Dudek M (2008) Ceramic oxide electrolytes based on CeO2—preparation, properties and possibility of application to electrochemical devices. J Eur Ceram Soc 28:965–971. https://doi.org/10.1016/j.jeurceramsoc.2007.09.004

    Article  CAS  Google Scholar 

  14. Ding C, Lin H, Sato K, Tsutai Y, Ohtaki H, Iguchi M, Wada C, Hashida T (2009) Preparation of doped ceria electrolyte films for SOFCs by spray coating method. Dispers Sci Technol 30:241–245. https://doi.org/10.1080/01932690802501709

    Article  CAS  Google Scholar 

  15. Luo J, Ball RJ, Stevens R (2004) Gadolinia doped ceria/yttria stabilised zirconia electrolytes for solid oxide fuel cell applications. J Mater Sci 39:235–240. https://doi.org/10.1023/B:JMSC.0000007749.72739.bb

    Article  CAS  Google Scholar 

  16. Ivers-Tiffee E, Weber A, Herbstritt D (2001) Materials and technologies for SOFC components. J Eur Ceram Soc 21:1805–1811. https://doi.org/10.1016/S0955-2219(01)00120-0

    Article  CAS  Google Scholar 

  17. Laurencin J, Delette G, Lefebvre-Joud F, Dupeux M (2008) A numerical tool to estimate SOFC mechanical degradation: case of the planar cell configuration. J Eur Ceram Soc 28:1857–1869. https://doi.org/10.1016/j.jeurceramsoc.2007.12.025

    Article  CAS  Google Scholar 

  18. Sun JL, Wang JX, He CR, Shen P, Wang Q, Miao H, Wang WG (2015) Synthesis and electrical properties of screen-printed doped ceria interlayer for IT-SOFC applications. J Alloy Compd 628:450–457. https://doi.org/10.1016/j.jallcom.2014.12.169

    Article  CAS  Google Scholar 

  19. Anderson RG, Nowick AS (1981) Ionic conductivity of CeO2 with trivalent dopants of different ionic radii. Solid State Ion 5:547–550. https://doi.org/10.1016/0167-2738(81)90313-1

    Article  Google Scholar 

  20. Aktasa B, Tekeli S, Salman S (2016) Improvements in microstructural and mechanical properties of ZrO2 ceramics after addition of BaO. Ceram Int 42:3849–3854. https://doi.org/10.1016/j.ceramint.2015.11.049

    Article  CAS  Google Scholar 

  21. Zhang TS, Hing P, Huang H, Kilner J (2002) Early-stage sintering mechanisms of Fe-doped CeO2. J Mater Sci 37:997–1003. https://doi.org/10.1023/A:1014362000128

    Article  CAS  Google Scholar 

  22. Yu J, Shi J, Yu S (2017) The electrochromic behavior of Bi2O3 thin film prepared by sol–gel technique. J Sol-Gel Sci Technol 84:239–245. https://doi.org/10.1007/s10971-017-4496-7

    Article  CAS  Google Scholar 

  23. Linderoth S, Bonanos N, Jensen JV, Bilde-Sørensen JB (2001) Effect of NiO-to-Ni transformation on conductivity and structure of yttria-stabilized ZrO2. J Am Ceram Soc 84:2652–2656. https://doi.org/10.1111/j.1151-2916.2001.tb01067.x

    Article  CAS  Google Scholar 

  24. Appel CC, Bonanos N (1999) Structural and electrical characterisation of silica containing yttria-stabilised zirconia. J Eur Ceram Soc 19:847–851. https://doi.org/10.1016/S0955-2219(98)00329-X

    Article  CAS  Google Scholar 

  25. Aktas B, Tekeli S (2014) Influence of Co3O4 addition on the ionic conductivity and microstructural properties of 8YSZ. Int J Mater Res 105(6):577–583

    Article  CAS  Google Scholar 

  26. Aktas B, Tekeli S, Kucuktuvek M (2014) Electrical Conductivity of Er2O3-Doped c-ZrO2 Ceramics. JMEPEG 23:349–355. https://doi.org/10.1007/s11665-013-0750-5

    Article  CAS  Google Scholar 

  27. Lewis G, Atkinson A, Steele B (2001) Cobalt additive for lowering the sintering temperature of yttria-stabilized zirconia. J Mater Sci Lett 20:1155–1157. https://doi.org/10.1023/A:1010912912157

    Article  CAS  Google Scholar 

  28. Zhang T, Zeng Z-Q, Huang H, King P, Kilner J (2002) Effect of alumina addition on the electrical and mechanical properties of Ce0.8Gd0.2O2−δ ceramics. Mater Lett 57:124–129. https://doi.org/10.1016/S0167-577X(02)00717-6

    Article  CAS  Google Scholar 

  29. Peiteado M, de la Rubia MA, Velasco MJ, Valle FJ, Caballero AC (2005) Bi2O3 vaporization from ZnO-based varistors. J Eur Ceram Soc 25:1675–1680. https://doi.org/10.1016/j.jeurceramsoc.2004.06.006

    Article  CAS  Google Scholar 

  30. Sındıraç C, Çakırlar S, Büyükaksoy A, Akkurt S (2019) Lowering the sintering temperature of solid oxide fuel cell electrolytes by infiltration. J Eur Ceram Soc 39:409–417

    Article  Google Scholar 

  31. Aytimur A, Tascıoglu I, Arı M, Uslu I, Dagdemir Y, Durmus S, Altındal S (2013) A study of polymer-derived erbia-doped Bi2O3 nanocrystalline ceramic powders. J Sol-Gel Sci Technol 66:317–323. https://doi.org/10.1007/s10971-013-3011-z

    Article  CAS  Google Scholar 

  32. ASTM C-1327-99 (1999) Standard test method for Vickers indentation hardness of advanced ceramics. Annu Book ASTM Stand 14:02

    Google Scholar 

  33. Evans AG, Charles EA (1976) Fracture toughness determination by indentation. J Am Ceram Soc 59:371–372. https://doi.org/10.1111/j.1151-2916.1976.tb10991.x

    Article  CAS  Google Scholar 

  34. German RM (1985) Liquid phase sintering. Plenum Press. A Division of Plenum Publishing Corporation, New York

    Book  Google Scholar 

  35. Sundaresan R, Ramakrishnan P (1978) Liquid phase sintering of aluminum base alloys. Int J Powder Met Powder Tech 14:9–16

    CAS  Google Scholar 

  36. Moon IH, Kwon YS (1979) Some observations on sintering of the nickel-doped tungsten compacts. Scr Met 13:33–36. https://doi.org/10.1016/0036-9748(79)90384-3

    Article  CAS  Google Scholar 

  37. Meredith B, Milner DR (1976) The liquid-phase sintering of titanium carbide. Powder Met 19:162–170. https://doi.org/10.1179/pom.1976.19.3.162

    Article  CAS  Google Scholar 

  38. Puckert FJ, Kaysser WA, Petzow G(1983) Transient liquid phase sintering of Ni-Cu. Z Metalfkde 74:737–743. 10.1515/ijmr-1983-741107

  39. Balzer B, Hagemeister M, Kocher P, Gauckler LJ (2004) Mechanical strength and microstructure of zinc oxide varistor ceramics. J Am Ceram Soc 87:1932–1938. https://doi.org/10.1111/j.1151-2916.2004.tb06343.x

    Article  CAS  Google Scholar 

  40. Metz R, Delalu H, Vignalou JR, Achard N, Elkhatib M (2000) Electrical properties of varistors in relation to their true bismuth composition after sintering. Mater Chem Phys 63:157–162. https://doi.org/10.1016/S0254-0584(99)00227-8

    Article  CAS  Google Scholar 

  41. Tang Q, Gong J (2013) Effect of porosity on the microhardness testing of brittle ceramics: a case study on the system of NiO–ZrO2. Ceram Int 39:8751–8759. https://doi.org/10.1016/j.ceramint.2013.04.061

    Article  CAS  Google Scholar 

  42. Chakraborty D, Mukerji J (1980) Characterization of silicon nitride single crystals and polycrystalline reaction sintered silicon nitride by micro-hardness measurements. J Mater Sci 15:3051–3056. https://doi.org/10.1007/BF00550375

    Article  CAS  Google Scholar 

  43. Hirao K, Tomozawa M (1987) Microhardness of SiO2 glass in various environments. J Am Ceram Soc 70:497–502. https://doi.org/10.1111/j.1151-2916.1987.tb05683.x

    Article  CAS  Google Scholar 

  44. Babini GN, Bellosi A, Galassi C (1987) Characterization of hot-pressed silicon nitride-based materials by microhardness measurements. J Mater Sci 22:1687–1693. https://doi.org/10.1007/BF01132393

    Article  CAS  Google Scholar 

  45. Kambale KR, Mahajan A, Butee SP (2019) Effect of grain size on the properties of ceramics. Met Powder Rep. 74:130–136. https://doi.org/10.1016/j.mprp.2019.04.060

    Article  Google Scholar 

  46. Quinn GD, Bradt RC (2007) On the Vickers indentation fracture toughness test. J Am Ceram Soc 90:673–80. https://doi.org/10.1111/j.1551-2916.2006.01482.x

    Article  CAS  Google Scholar 

  47. Zhan DD, Kuntz JD, Wan JU, Mukherjee AK (2003) Single-wall carbon nanotubes as attractive toughening agents in alumina-based nanocomposites. Nat Mater 2:38–42. https://doi.org/10.1038/nmat793

    Article  CAS  PubMed  Google Scholar 

  48. Wang X, Padture NP, Tanaka H (2004) Contact-damage-resistant ceramic/single-wall carbon nanotubes and ceramic/graphite composites. Nat Mater 3:539–44. https://doi.org/10.1038/nmat1161

    Article  CAS  PubMed  Google Scholar 

  49. Jiang D, Thomson K, Kuntz JD, Ager JW, Mukherjee AK (2007) Effect of sintering temperature on a single-wall carbon nanotube-toughened alumina-based nanocomposite. Scr Mater 56:959–962. https://doi.org/10.1016/j.scriptamat.2007.02.007

    Article  CAS  Google Scholar 

  50. Anstis GR, Chantikul P, Lawn BR, Marshall DB (1981) A critical evaluation of indentation techniques for measuring fracture toughness: I, direct crack measurements. J Am Ceram Soc 64:533–538. https://doi.org/10.1111/j.1151-2916.1981.tb10320.x

    Article  CAS  Google Scholar 

  51. Warren RJohannessen B,(1984) Fract Toughness Hardmetals. Int J Refractory Hard Met 3:187–191ISSN 0263-4368

  52. Karandikar PG, Evans G, Wong S, Aghajanian MK (2008). A review of ceramics for armor applications, in Advances in Ceramic Armor IV, Volume 29, Issue 6, Editado por Lisa Prokurat Franks, 163–174

  53. Sun Y, Edwards MG, Chen B, Chenfeng L (2021) A state-of-the-art review of crack branching. Eng Fract Mech 257:108036. https://doi.org/10.1016/j.engfracmech.2021.108036

    Article  Google Scholar 

  54. Bueno S, Baudín C (2007) Mechanical behaviour of structural ceramics. Bol Soc Esp Ceram V 46:103–118. ISSN: 0366-3175

    Article  CAS  Google Scholar 

  55. Aktas B, Das R, Acikgoz A, Demircan G, Yalcin S, Aktas HG, Balak MV (2024) DLP 3D printing of TiO2-doped Al2O3 bioceramics: manufacturing, mechanical properties, and biological evaluation. Mater Today Commun 38:107872. https://doi.org/10.1016/j.mtcomm.2023.107872

    Article  CAS  Google Scholar 

  56. Gil V, Moure C, Durán P, Tartaj J (2007) Low-temperature densification and grain growth of Bi2O3-doped-ceria gadolinia ceramics. Solid State Ion 178:359–365. https://doi.org/10.1016/j.ssi.2007.02.002

    Article  CAS  Google Scholar 

  57. Makarova RV, Teodorovich OK, Frantsevich IN (1965) The coalescence phenomenon in liquid phase sintering in the systems tungsten-nickel- iron and tungsten-nickel-copper. Sov Powder Met Met Ceram 4:554–559. https://doi.org/10.1007/BF00774258

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to express their appreciation to Cesar Leyva P. and Karla Campos V. for assistance in SEM. In addition, we would like to thank Andrés I. Gonzalez J. for his assistance in XRD.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

“All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by A. R., M.B. and A. A. The first draft of the manuscript was written by A. R. and M. B. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.”

Corresponding author

Correspondence to M. H. Bocanegra-Bernal.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

La Cruz, A.RD., Bocanegra-Bernal, M.H., Aguilar-Elguezabal, A. et al. Impact of alumina powder bed on hardness and fracture toughness in the sintering process of NiO-GDC-Bi2O3 composite prepared by sol-gel method. J Sol-Gel Sci Technol (2024). https://doi.org/10.1007/s10971-024-06369-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10971-024-06369-x

Keywords

Navigation