Skip to main content
Log in

Synthesis of Oxide-Based Materials with the Brownmillerite Structure of the CaO–Bi2O3–Fe2O3 System

  • Published:
Refractories and Industrial Ceramics Aims and scope

A single-phase material based on the complex oxide Ca2Fe2O5 doped with bismuth was synthesized by glycine-nitrate combustion. Characterization by x-ray diffractometry, helium pycnometry, scanning electron microscope, and elemental analysis showed that the material was isostructural to brownmillerite. The optimum temperature for the synthesis of the material was about 650°C and the material had thermal stability over a wide temperature range according to results of complex thermal analysis together with mass spectrometry. The sintering temperature and thermal expansion coefficient of the material were determined using a dilatometry method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  1. A. L. Shaula, Y. V. Pivak, J. C. Waerenborgh, et al., “Ionic conductivity of brownmillerite-type calcium ferrite under oxidizing conditions,” Solid State Ionics, 177, 2923 – 2930 (2006); DOI: https://doi.org/10.1016/j.ssi.2006.08.030.

    Article  CAS  Google Scholar 

  2. D. S. Vavilapalli, K. Srikanti, R. Mannam, et al., “Photoactive brownmillerite multiferroic KBiFe2O5 and its potential application in sunlight-driven photocatalysis,” ACS Omega, 3, 16643 – 16650 (2018); DOI: https://doi.org/10.1021/acsomega.8b01744.

    Article  CAS  Google Scholar 

  3. B. F. Amorim, M. A. Morales, F. Bohn, et al., “Synthesis of stoichiometric Ca2Fe2O5 nanoparticles by high-energy ball milling and thermal annealing,” Phys. B, 488, 43 – 48 (2016); DOI: https://doi.org/10.1016/j.physb.2016.01.029.

    Article  CAS  Google Scholar 

  4. B. V. Beznosikov and K. S. Aleksandrov, Brownmillerite-type Crystals. Crystal Chemistry, Prediction of New Compounds, Preprint No. 840F, Ross. Akad. Nauk, Sib. Otd., Inst. Fiz. im. L. V. Kirenskogo, IF SO RAN, Krasnoyarsk, 2007, 27 pp.

    Google Scholar 

  5. H. Kruger, V. Kahlenberg, V. Petricek, et al., “High-temperature structural phase transition in Ca2Fe2O5 studied by in-situ x-ray diffraction and transmission electron microscopy,” J. Solid State Chem., 182, 1515 – 1523 (2009); DOI:https://doi.org/10.1016/j.jssc.2009.03.027.

    Article  CAS  Google Scholar 

  6. C. B. Azzoni, M. C. Mozzati, V. Massarotti, et al., “New insights into the magnetic properties of Ca2Fe2O5 ferrite,” Solid State Sci., 9, 515 – 520 (2007); DOI:https://doi.org/10.1016/j.solidstatesciences.2007.04.013.

    Article  CAS  Google Scholar 

  7. S. Dhankhar, G. Bhalerao, K. Baskar, and Sh. Singh, “Synthesis and characterization of polycrystalline brownmillerite cobalt doped Ca2Fe2O5,” AIP Conf. Proc., 1731, 140032 (2016); DOI: https://doi.org/10.1063/1.4948198.

    Article  CAS  Google Scholar 

  8. N. A. Lomanova, M. V. Tomkovich, A. V. Osipov, et al., “Formation of Bi1–xCaxFeO3–δ nanocrystals under the glycine-nitrate combustion conditions,” Zh. Obshch. Khim., 89(9), 1448 – 1456 (2019); DOI: https://doi.org/10.1134/S0044460X19090191.

    Article  Google Scholar 

  9. V. V. Gusarov, “The thermal effect of melting in polycrystalline systems” Thermochim. Acta, 256(2), 467 – 472 (1995); DOI: https://doi.org/10.1016/0040-6031(94)01993-Q.

    Article  CAS  Google Scholar 

  10. N. A. Lomanova and V. V. Gusarov, “Influence of synthesis temperature on BiFeO3 nanoparticles formation,” Nanosyst.: Phys., Chem., Math., 4(5), 696 – 705 (2013).

    CAS  Google Scholar 

  11. A. N. Kovalenko and E. A. Tugova, “Thermodynamics and kinetics of non-autonomous phase formation in nanostructured materials with variable functional properties,” Nanosyst.: Phys., Chem., Math., 9(5), 641 – 662 (2018); DOI: https://doi.org/10.17586/2220-8054-2018-9-5-641-662.

    Article  CAS  Google Scholar 

  12. O. N. Karpov, M. V. Tomkovich, and E. A. Tugova, “Formation of Nd1–xBixFeO3 nanocrystals under conditions of glycine-nitrate synthesis,” Zh. Obshch. Khim., 88(10), 1692 – 1698 (2018); DOI: https://doi.org/10.1134/S0044460X18100177.

    Article  Google Scholar 

  13. R Patel and P. Sawadh, “Tunable multiferroic properties of cerium doped bismuth ferrite,” Nanosyst.: Phys., Chem., Math., 10(3), 255 – 265 (2019); DOI: https://doi.org/10.17586/2220-8054-2019-10-3-255-265.

    Article  CAS  Google Scholar 

  14. N. A. Lomanova, A. V. Osipov, and V. L. Ugolkov, “Production of nanocrystalline ceramics based on perovskite-like oxides Bi1–xSrxFeO3δ,” Nov. Ogneupory, No. 10, 33 – 37 (2019).

    Google Scholar 

  15. O. V. Almjasheva, N. A. Lomanova, V. I. Popkov, et al., “The minimum size of oxide nanocrystals: phenomenological thermodynamic vs crystal-chemical approaches,” Nanosyst.: Phys., Chem., Math., 10(4), 428 – 437 (2019); DOI: https://doi.org/10.17586/2220-8054-2019-10-4-428-437.

    Article  CAS  Google Scholar 

  16. R. D. Shannon, “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr., 32, 751 – 757 (1976).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Lomanova.

Additional information

Translated from Novye Ogneupory, No. 4, pp. 36 – 40, April, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lomanova, N.A. Synthesis of Oxide-Based Materials with the Brownmillerite Structure of the CaO–Bi2O3–Fe2O3 System. Refract Ind Ceram 61, 207–210 (2020). https://doi.org/10.1007/s11148-020-00457-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11148-020-00457-5

Keywords

Navigation