Skip to main content
Log in

High-Density Micro- and Nano-Grain Size Ceramics. Transition from Open into Closed Pores. Part 3. Workpiece Sintering without External Pressure1

  • Published:
Refractories and Industrial Ceramics Aims and scope

An explanation of processes occurring during preparation of high-density micro- and nanogranular ceramics without using external pressure on the basis of published data is proposed. It is well known that pore growth commences after the start of transition of open into closed pores that begins with about 30 % open porosity. It is necessary to maintain open pores to the maximum possible sintered ceramic overall density. The article describes different methods of ceramic sintering making it possible to prepare high-density pore-free ceramics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

References

  1. A. V. Belyakov, “High-density micro- and nano-grain size ceramics. Transition of open into closed pores. Preparation of powders, molding mix, and molding. Part 1,” Novye Ogneupory, No. 11 (2019).

  2. A. V. Belyakov, “High-density micro- and nano-grain size ceramics. Transition of open into closed pores. Binder removal,” Novye Ogneupory, No. 12 (2019).

  3. V. Shatokha, (editor) Sintering — Methods and Products, Published by InTech, Croatia (2012).

  4. B. Ertuğ, (editor) Sintering Applications, Published by InTech, Croatia (2013).

  5. A. Lakshmanan, (editor) Sintering of CeramicsNew Emerging Techniques, Published by InTech, Croatia (2012).

  6. M. N. Rahaman, Sintering of Ceramics, CRC Press, Boca Raton (2007).

    Google Scholar 

  7. A. V. Belyakov, Synergetic and quasichemical approaches in ceramic technology (a review),” Glass and Ceramics, 60(9/10), 274 – 279 (2003).

    CAS  Google Scholar 

  8. A. V. Belyakov, “Causes of anomalous crystal growth in sintering ceramics after formation of closed pores began,” Glass and Ceramics, 64(1/2), 17 – 21 (2007).

    Google Scholar 

  9. A. V. Belyakov, “Production of transparent ceramic. Synergetic approach,” Glass and Ceramics, 66(11/12), 416 – 422 (2009).

    CAS  Google Scholar 

  10. A. V. Belyakov, “Principal bifurcations in firing of compact oxide ceramics,” Glass and Ceramics, 57(10), 345 – 349 (2000).

    CAS  Google Scholar 

  11. A. V. Belyakov and E. A. Brygina, “Local compaction areas in sintering of ceramics and structural reproducibility,” Glass and Ceramics, 55(9), 307 – 309 (1998).

    CAS  Google Scholar 

  12. A. V. Belyakov and A. S. Yen’ko, “Identification of local compactions in ceramics,” Glass and Ceramics, 56(11/12), 389 – 392 (2000).

    Google Scholar 

  13. V. K. Vorob’ev, D. N. Poluboyarinov, and V. S. Bakunov, “Measurement of ceramic compact electrical conductivity during sintering,” Trudy Inst. MKhTI im D. I. Mendeleeva, No. 68, 118 – 121 (1971).

    Google Scholar 

  14. I. S. Semirikov, “New oxide ceramic sintering methods, kinetics, and mechanisms,” Vestnik UGTU. Fiz.-Tekhnol. Oxidno-Silikatnykh Materialov No. 1, 157 – 160 (2000).

  15. R. M. German, Sintering Theory and Practice, John Wiley & Sons, New York (1996).

    Google Scholar 

  16. R. M. German, P. Suri, and S. J. Park, “Review: liquid phase sintering,” J. Mater. Sci., 44(1), 1 – 39. Access regime: http://www.springerlink.com/content/eu8804w248232124/.

  17. W. Dong, H. Jain, and M. P. Harmer, “Liquid phase sintering of alumina. II. Penetration of liquid phase into model microstructures,” J. Am. Ceram. Soc., 88(7), 1708 – 1713 (2005).

    CAS  Google Scholar 

  18. N. A. Makarov, “Sintering specifics of corundum ceramics modified with eutectic additives,” Glass and Ceramics, 63(3/4), 119 – 121 (2006).

    CAS  Google Scholar 

  19. N. A. Makarov, “Composite material in the aluminum oxide-zirconium dioxide system,” Glass and Ceramics, 64(3/4), 120 – 123 (2007).

    CAS  Google Scholar 

  20. A. A. Evteev, D. O. Lemeshev, S. V. Zhitnyuk, et al., “ZrO2–Al2O3 ceramic with eutectic additives,” Glass and Ceramics, 68(7/8), 258 – 262 (2011).

    CAS  Google Scholar 

  21. Y.-D. Yu, A. M. Hundere, R. Høier, et al., “Microstructural characterization and microstructural effects on the thermal conductivity of AlN(Y2O3) ceramics,” J. Eur. Ceram. Soc., 22, 247 – 252 (2002).

    CAS  Google Scholar 

  22. A. V. Belyakov and E. B. Bendovskii, “Fabrication of high-purity single phase dense ceramic from high-sintering complex oxides,” Glass and Ceramics, 72(5/6), 206 – 211 (2015).

    CAS  Google Scholar 

  23. M. P. Harmer and R. J. Brook, “Fast firing — microstructural benefits,” Trans. J. Brit. Ceram. Soc., 80, 147 – 148 (1981).

    CAS  Google Scholar 

  24. H. Mostaghaci and R. J. J. Brook, “Production of dense and fine grain size BaTiO3 by fast firing,” Trans. J. Brit. Ceram. Soc., 82(5), 167 – 170 (1983).

    CAS  Google Scholar 

  25. X. Zheng, Z. Y. Fu, J. Y. Zhang, et al., “Superfast sintering of nanocrystalline Y2O3 ceramics,” Adv. Mater. Res., 66, 100 – 103 (2009).

    CAS  Google Scholar 

  26. D. A. Garsia, A. N. Klein, and D. Hotza, “Advanced ceramics with dense and fine grained microstructures through fast firing,” Rev. Adv. Mater. Sci., 30, 273 – 281 (2012).

    Google Scholar 

  27. D. A. Garsia, D. Hotza, and R. Janssen, “Building a sintering front through fast firing,” Int. J. Appl. Ceram. Technol., 8, 1486 – 1493 (2011).

    Google Scholar 

  28. Y.W. Kim and J. G. Lee, “Pressureless sintering of alumina titanium carbide composite,” J. Am. Ceram. Soc., 72, 1333 – 1337 (1989).

    CAS  Google Scholar 

  29. K. I. Rybakov, E. A. Olevsky, and E. V. Krikun, “Microwave applications,” In book: National Research Council (2013).

  30. K. I. Rybakov, E. A. Olevsky, and E. V. Krikun, “Microwave sintering: fundamentals and modeling,” J. Am. Ceram. Soc., 96(4), 1003 – 1020 (2013).

    CAS  Google Scholar 

  31. I. N. Sudiana, R. Ito, S. Inagaki, et al., “Densification of alumina ceramics sintered by using submillimeter wave gyrotron,” Journal of Infrared, Millimeter and Terahertz Waves, 34(10), 627 – 638 (2013).

    CAS  Google Scholar 

  32. O. Zgalat-Lozynskyy and A. Ragulya, “Densification kinetics and structural evolution during microwave and pressureless sintering of 15 nm titanium nitride powder,” Nanoscale Research Letters, 11(1), 1 – 9 (2016).

    Google Scholar 

  33. Microwave Solutions for Ceramic Engineers (ed. by D. E. Clark, D. C. Folz, C. E. Folgar, et al.) Wiley, New York (2005).

  34. H. Palmour III and M. L. Huckabee, USAPat. 3900542. Process for sintering finely divided particulates and resulting ceramic products; assignee: Arthur D. Little, Inc., Cambridge, Mass.; filed: Apr. 26, 1973; appl. No. US 35451573; pub. 08.19.1975.

  35. M. Huckabee and H. Palmour III, “Rate-controlled sintering of fine grained alumina,” Am. Ceram. Soc. Bull., 51(7), 574 – 576 (1972).

    Google Scholar 

  36. M. L. Huckabee, T. M. Hare, and H. Palmour III, “Rate-controlled sintering as a processing method/Proceedings of the Fourteenth University Conference on Ceramic Science. Vol. 11 of the series; ed. by H. Palmour III, R. F. Davis, T. M. Hare. Plenum Press, New York and London (1978).

  37. H. Palmour III and T. M. Hare, “Rate-controlled sintering revisited,” Proc. 6th world round table conf. on sintering, Herceg-Novi, Yugoslavia; ed. by G. C. Kuczynski, et al. Plenum Press, New York (1987).

  38. V. V. Skorokhod and A. V. Ragulya, “Sintering at a controlled rate as a method for regulating the microstructure of ceramics and similar sintered materials,” Russ. Non-Ferr. Metals, 33, 109 – 117 (1995).

    Google Scholar 

  39. R. J. Brook, “Fabrication principles for the production of ceramics with superior mechanical properties,” Proc. Brit. Ceram. Soc., 32(3), 7 – 24 (1982).

    CAS  Google Scholar 

  40. Z. P. Xie, J. L. Yang, and Y. Huang, “Densification and grain growth of alumina by microwave processing,” Mater. Lett., 37, 215 – 220 (1998).

    CAS  Google Scholar 

  41. J. Opfermann, G. Wilke, W. Ludwig, et al., “Thermische Analyseverfahren in Industrie und Forschung,” VI. Herbstschule, Meisdorf 14.18. Nov. 1988, Friedrich-Schiller-Universität, Jena (1991).

  42. E. Kaisersberger and J. Opfermann, “Kinetische Analyse thermischer Effekte,” Laborpraxis, 4, 360 – 364 (1992).

    Google Scholar 

  43. J. Opfermann, F. Giblin, J. Mayer, et al., “An improved method for invariant kinetic parameters and a high level of model differentiation,” Am. Lab., 27(4), 34 – 41 (1995).

    CAS  Google Scholar 

  44. J. Opfermann, “Kinetic analysis using multivariate nonlinear regression. I. Basic concepts,” Therm. Anal. and Calorim., 60(2), 641 – 658 (2000).

    CAS  Google Scholar 

  45. J. R. Opfermann, E. Kaisersberger, and H. J. Flammersheim, “Model-free analysis of thermoanalytical data — advantages and limitations,” Thermochim. Acta., 391(1/2), 119 – 127 (2002).

    CAS  Google Scholar 

  46. A. C. Müller, J. R. Opfermann, and E. Ivers-Tifféea, “Modelling and optimisation of solid electrolyte sintering behaviour by thermokinetic analysis,” Thermochim. Acta., 414(1), 11 – 17 (2004).

    Google Scholar 

  47. J. Opfermann, J. Blumm, and W. D. Emmerich, “Simulation of the sintering behavior of a ceramic green body using advanced thermokinetic analysis results,” Thermochim. Acta., 318(1/2), 213 – 220 (1998).

    CAS  Google Scholar 

  48. Dilatometer Special Software. LINSEIS. Software for Dilatometers. [Electronic source] Access regime: https://bit.ly/3gbqgDB.

  49. O. Zgalat-Lozynskyy, A. Ragulya, and M. Herrmann, “Spark plasma and rate controlled sintering of high-melting point nanocomposites,” Proceedings of the international conference nanomaterials: applications and properties 1, No. 3 (2012P.03CNN05 1-4. Access regime: https://bit.ly/30UosIM.

  50. P.-L. Chen and I.-W. Chen, “Grain boundary mobility in Y2O3: defect mechanism and dopant effects,” J. Am. Ceram. Soc., 79(7), 1801 – 1809 (1996).

    CAS  Google Scholar 

  51. P.-L. Chen and I.-W. Chen, “Sintering of fine oxide powder. I. Microstructural evolution,” J. Am. Ceram. Soc., 79(12), 3129 – 3141 (1996).

    CAS  Google Scholar 

  52. P.-L. Chen and I.-W. Chen, “Sintering of fine oxide powders. II. Sintering mechanisms,” J. Am. Ceram. Soc., 80, No. 3, 637 – 645 (1997).

    CAS  Google Scholar 

  53. I.-W. Chen and X.-H. Wang, “Sintering dense nanocrystalline ceramics without final-stage grain growth,” Nature, 404(6774), 168 – 171 (2000).

    CAS  Google Scholar 

  54. J. F. da Silva Jr, R. M. do Nascimento, U. U. Gomes, et al., “Two-step sintering applied to ceramics,” in: Sintering of CeramicsNew Emerging Techniques (ed. by Dr. A. Lakshmanan) Published by InTech, Croatia (2012).

  55. K. Rajeswari, A. R. Reddy, U. S. Hareesh, et al., “Micro structural control of stabilized zirconia ceramics (8YSZ) through modified conventional sintering methodologies,” Science of Sintering, 42(1). 91 – 97 (2010).

    CAS  Google Scholar 

  56. X.-H.Wang, P.-L. Chen, and I.-W. Chen, “Two-step sintering of ceramics with constant grain-size. I. Y2O3,” J. Am. Ceram. Soc., 89(2), 431 – 43 (2006).

    CAS  Google Scholar 

  57. K. Maca, V. Pouchly, and P. Zalud, “Two-step sintering of oxide ceramics with various crystal structures,” J. Eur. Ceram. Soc., 30(2), 583 – 589 (2010).

    CAS  Google Scholar 

  58. Z. R. Hesabi and M. Mazaheri, “Processing of titania nanoceramics via conventional sintering, two-step sintering and two-step sintering assisted by phase transformation,” in: Lin, A. Gyekenyesi, L. An, et. al., Advanced Materials for Sustainable Developments: Ceramic Engineering and Science Proceedings. 31, 1 9, John Wiley and Sons Ltd., New York (2010).

  59. M. M. Shahraki, S. A. Shojaee, M. A. F. Sani, et al., “Two-step sintering of ZnO varistors,” Solid State Ionics, 190, 99 – 105 (2011).

    CAS  Google Scholar 

  60. Yu. M. Annenkov, A. O. Okenova, and A. S. Ivashutenko, “Two-sage technology for sintering corundum and zirconia ceramics,” Inst. Gos. Uprav, Prava Innovats Tekhnol (IGUPIT). Internet. Zh. Naukovedenie, No. 4, 1 – 6 (2012). Access regime: http://naukovedenie.ru120TBH412.

  61. X. H. Wang, X.-Y. Deng, H.-L. Bai, et al., “Two-step sintering of ceramics with constant grain-size. II. BaTiO3 and Ni–Cu–Zn ferrite,” J. Am. Ceram. Soc., 89(2), 438 – 443 (2006).

    CAS  Google Scholar 

  62. Y. Xie, T. Kimura, S. Yin, et al., “Particle size control, sinterability and piezoelectric properties of BaTiO3 prepared by a novel composite-hydroxide-mediated approach,” Materials Sciences and Applications, 2(7), 758 – 764 (2011).

    CAS  Google Scholar 

  63. M. H. Fathi and M. Kharaziha, “Two-step sintering of dense, nanostructural forsterite,” Mater. Lett., 63(17), 1455 – 1458 (2009).

    CAS  Google Scholar 

  64. T. Karaki, K. Yan, and M. Adachi, “Barium titanate piezoelectric ceramics manufactured by two-step sintering,” Jpn. J. Appl. Phys., 46(10B), 7035 – 7038 (2007).

    CAS  Google Scholar 

  65. A. Rafferty, T. Prescott, and D. Brabazon, “Sintering behaviour of cobalt ferrite ceramic,” Ceram. Int., 34(1), 15 – 21 (2008).

    CAS  Google Scholar 

  66. X.-H. Wang, I-Wei Chen, X.-Y. Deng, et al., “New progress in development of ferroelectric and piezoelectric nanoceramics (Review),” J. Adv. Ceram., 4(1), 1 – 21 (2015).

    Google Scholar 

  67. Z. R. Hesabi, M. Mazaheri, and T. Ebadzadeh, “Enhanced electrical conductivity of ultrafine-grained 8Y2O3 stabilized ZrO2 produced by twostep sintering technique,” Alloys Compd., 494(1), 362 – 365 (2010).

    Google Scholar 

  68. J. G. Hao, W. F. Bai, B. Shen, et al., “Improved piezoelectric properties of (KxNa1–x)0.94Li0.06NbO3 lead-free ceramics fabricated by combining two-step sintering,” Alloys Compd., 534, 13 – 19 (2012).

    CAS  Google Scholar 

  69. E. Salahi, M. Alidoustib, S. Isafi, et al., “Effect of processing on mechanical properties of zirconia alumina hydroxyapatite nanocomposites fabricated by two-step sintering,” Proceedings of the 4th International Conference on Nanostructures (ICNS4). 12 – 14 March, 2012, Kish Island, I. R. Iran.

  70. S.-M. Moon, X. Wang, and N.-H. Cho, “Nanostructural and physical features of BaTiO3 ceramics prepared by two-step sintering,” J. Ceram. Soc. Jpn., 117(1366), 729 – 731 (2009).

    CAS  Google Scholar 

  71. C.-J. Wang, C.-Y. Huang, and Y.-C. Wu, “Two-step sintering of fine alumina – zirconia ceramics,” Ceram. Int., 35(4), 1467 – 147 (2009).

    CAS  Google Scholar 

  72. N. J. Lóh, L. Simão, C. A. Faller, et al., “A review of two-step sintering for ceramics,” Ceram. Int., 142, 12556 – 12572 (2016).

    Google Scholar 

  73. M. Maeda, Y. Zhao, Y. Watanabe, et al., “Fabrication and superconducting properties of highly dense MgB2 bulk using a two-step sintering method,” IEEE Trans. Appl. Superconductivity, 19(3), 2763 – 2766 (2009).

    CAS  Google Scholar 

  74. K.-W. Kim, K.-S. Oh, H. Lee, et al., “Preparation of fine grained SiC at reduced temperature by two-step sintering,” Archives of Metallurgy and Materials, 60(2), 1539 – 1542 (2015).

    CAS  Google Scholar 

Download references

Work was carried out with financial support of the RF Ministry of Education and Science within the scope of an agreement for supply of a subsidy of 09.27.2017 No. 14.574.21.0158.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Belyakov.

Additional information

Parts 1 and 2 of the article published in Novye Ogneupory Nos. 11 and 12 (2019).

Translated from Novye Ogneupory, No. 1, pp. 39 – 50, January, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belyakov, A.V. High-Density Micro- and Nano-Grain Size Ceramics. Transition from Open into Closed Pores. Part 3. Workpiece Sintering without External Pressure1. Refract Ind Ceram 61, 40–49 (2020). https://doi.org/10.1007/s11148-020-00428-w

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11148-020-00428-w

Keywords

Navigation